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ABSTRACT
In this paper, we extend prior research on Multiple Model (MM) Kalman filtering for Global Positioning System (GPS) carrier
phase and frequency estimation in weak or jammed signal scenarios. MM Kalman filtering enables GPS receivers to maintain
high-quality positioning, navigation, and timing solutions even during prolonged jamming periods, lasting up to several hours.

In prior research, we demonstrated the superior tracking performance of the MM Kalman filter over traditional Phase Lock Loop
(PLL) under strong Radio Frequency Interference (RFI) event scenario. The tracking result was validated for a single satellite
under a 15 dB-Hz carrier to noise ratio (C/N0). In this research, we continue the work to obtain position solutions based on the
MM Kalman filter estimation output when all satellites are being jammed by wideband radio frequency interference.

We further enhance performance by augmenting the MM Kalman filter with historical navigation data knowledge and imple-
menting an upload-robust bit prediction strategy to support extended operational duration. A detection method based on IODE
(Issue of Data, Ephemeris) bits is introduced and applied to enhance performance during periods when the navigation message
remains unchanged.

With these methods, GPS receivers are shown to be able to operate through long duration wideband jamming events and provide
high quality positioning solutions.

I. INTRODUCTION
Normally, Global Positioning System (GPS) receivers use Phase Lock Loops (PLL) for carrier phase tracking. A PLL uses a
phase discriminator and loop filter to continuously measure and compensate for the phase difference between the local signal
replica and the incoming carrier signal. During a Radio Frequency Interference (RFI) event, the additive noise pumped into
the PLL degrades the phase discriminator’s ability to measure the true carrier phase, which in turn causes accumulated error in
carrier reconstruction and eventually loss of phase lock. Typical methods for PLL tracking of weak signals include extending
coherent averaging times (Tco) and tightening noise bandwidths.

Using large values of Tco, for example greater than 20 ms for Global Positioning System (GPS) signals, means integrating in-
phase (I) and quadrature (Q) signal samples across navigation data bit transitions. Existing techniques to extend averaging time
over multiple data bits, such as non-coherent memory discriminators Borio and Lachapelle (2009) and real-time bit estimation
techniques Stevanovic and Pervan (2017), introduce biases in the discriminator output in the presence of strong RFI that lead,
in turn, to biases in the reconstructed carrier frequency and ultimately loss of phase lock. Tightening the noise bandwidth can



be effective in reducing the tracking error variance, given a linear classic control PLL model, but it does not help to reduce
the discriminator output variance Stevanovic and Pervan (2017). In the presence of strong RFI the discriminator output can
saturate, making the PLL nonlinear and leading to instability and loss of lock.

The PLL is fundamentally a feedback control system, where the I and Q samples, as interpreted by the discriminator, serve as
the sensor (measurement) and the loop filter as the compensator (controller). However, the feedback control model is not the
only way to approach the carrier tracking problem. As first proposed in Psiaki and Jung (2002) and advocated more recently in
Vila-Valls et al. (2017) it can also be understood as an estimation problem amenable to Kalman filtering.

Kalman filter implementations are more flexible than PLLs because their component dynamic and measurement models can be
designed to suit the needs of specific implementation scenarios. They are also optimal estimators for applications with Gaussian
input noise, which is the case for wideband RFI. In earlier work, Kalman filters were used to estimate carrier phase through
ionospheric scintillation with Tav < 20 ms in (Vila-Valls et al., 2015) and (Humphreys et al., 2010) in simulation tests and in
(Humphreys et al., 2005) and (Vila-Valls et al., 2020) with some limited experiments. A Kalman filter architecture was also
used in (Psiaki and Jung, 2002) with to track numerically simulated weak GPS signals.

A major challenge in using a Kalman filter for GNSS carrier phase ‘tracking’ is that it is a hybrid stochastic estimation problem,
requiring simultaneous estimation of discrete navigation data bits and continuous carrier phase. In the case where data bits are
completely unknown, (Psiaki and Jung, 2002) addressed bit transition using a Bayesian bit estimation technique where equal
a-priori probability was assumed for each new data bit.

The applications we are initially targeting are aviation operations threatened by unpredictable wideband RFI events. There
is no reliable means today to supply navigation data bits from an external source to aircraft or related ground based GNSS
augmentation systems. We do not address the problem of signal acquisition during interference because our goal is to continue
tracking of existing satellites through RFI events of limited duration, not to start up and operate continuously in low signal
strength environments (e.g., indoors with A-GNSS). However, we do leverage the fact that broadcast ephemerides decoded prior
to the onset of RFI, except for events of especially long duration, will still be valid for satellite position and clock determination
during the event, in the case of GPS for at least two hours.(Dunn, 2013)

Utilizing previously decoded navigation data properly and maintaining awareness of any ephemeris cutovers and uploads can
significantly improve tracking and estimation performance. In this case, the receiver must obtain new data whenever there is an
ephemeris cutover or new navigation data upload, which in the case of Global Positioning System (GPS) operations, can happen
at any time. Understanding that navigation data changes happen infrequently for GPS, we then introduce a detection method for
such changes to enable adaptive updates of a-priori bit probabilities when needed, while at the same time maximizing the use
of data bit knowledge in cases where a navigation data transition has not occurred.

In our prior work in (Zhao and Pervan, 2019), we carried out preliminary simulation trials to study the feasibility of a Multiple
Model (MM) Kalman filter approach to carrier phase estimation, with encouraging results for static phase and different levels
of knowledge of the navigation data bits. In (Zhao and Pervan, 2020b), we showed experimental results under interference-free
conditions. The MM filter was able to generate the same carrier phase estimates as the PLL in nominal signal strength scenarios.
In (Zhao and Pervan, 2020a), we performed experiments under interference with results showing superior performance of the
MM filter over the PLL.

In Section II of this paper, the MM algorithm and the Kalman filter components are reviewed. Section III describes the
upload-robust bit prediction strategy and IODE check detection method. Section IV describes the experimental scenario and
setup. Section V presents positioning results under normal and interference conditions. Section VI, we summarize the results
and share ideas for future research.

II. KALMAN FILTER AND MM ALGORITHM
While PLLs are typically fixed structures with predefined discriminators and loop filters, Kalman filters have internal adaptability
to rely more heavily on either measurements or phase dynamics depending on the noise levels. Wideband interference events
contribute additive white Gaussian noise (AWGN) directly into the I and Q measurements. For typical PLL implementations
using phase discriminators, these noisy measurements can easily cause phase errors to exceed the pull-in limit of the discriminator,
which usually leads to cycle slips and eventual loss of lock.

The shortcomings of a traditional PLL can be overcome using a Kalman filter to estimate the carrier frequency and phase
directly. The goal in carrier tracking is to produce the best phase and frequency estimates under noisy conditions, which the
Kalman filter can optimally accomplish given that the noise is white (which is the case for wideband interference). Figure 1
shows a top-level block diagram of an IMM/Kalman-based carrier phase tracking architecture as it would be implemented in a
software defined receiver (SDR).

In our interference scenario, we assume that the receiver is already tracking, post-acquisition, before being subjected to an RFI



Figure 1: Top-level view of MM/Kalman-based carrier phase estimation in an SDR

event, and as a result, the Kalman filter estimate error is small immediately prior to the event onset.

1. Dynamic Model
Our goal is to estimate the carrier phase and frequency in real time. Over one pre-detection averaging interval, Tav , the
total phase change is ϕtot = ϕDopp + ϕclk, where ϕDopp is the phase change due to relative movement between the satellite
and receiver. For our current development, we assume a static receiver, e.g., a Ground Based Augmentation System (GBAS)
reference receiver, so that ϕDopp is the result of satellite motion only, which is known and removed using the last decoded
broadcast ephemeris. (In future work, user motion will be accounted for using inertial sensors.) Therefore, we only need a clock
phase dynamic model for our Kalman filter. The Power Spectral Density (PSD) for clock phase noise can be expressed using
the conventional power law model
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The values of the h coefficients will depend on the specific receiver and satellite clocks. Example coefficients for a TCXO clock
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For Kalman filter implementation, we define a state vector to include signal amplitude (A), clock phase (ϕclk), and clock
frequency (fclk), and a dynamic process model,
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where ∆t = Tav is the time increment represented by index k, and wk � N(0,W ) is time independent white noise. The
process noise covariance matrix is (Chan et al., 2014)
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f0 is the carrier frequency (e.g., f0 = fL1 = 1575.42 MHz for the GPS L1 signal), and δ2 � 0 is included to allow for small
nominal process noise on the amplitude state.

2. Measurement Model
The measurement model, with the known contributions of ϕDopp to the in-phase and quadrature components removed, is

Ik = dkAk cos(ϕclk,k) + vi,k (6)

Qk = dkAk sin(ϕclk,k) + vq,k (7)

where dk = �1 is the navigation data bit and vi,k and vq,k are white measurement processes distributed as [vi,k vq,k]
T �

N(0, Vk) with V = Iσ2
v,k. The measurement error variance σ2

v,k for a unit amplitude signal is related to the carrier-to-noise
ratio (C/N0,k) by
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The observation equations 6 and 7 are nonlinear in state ϕclk,k, so to execute the Kalman measurement update they must be
linearized about the best available estimate, ϕ̂clk,kjk�1, obtained from the previous dynamic update.

3. MM Algorithm
The MM algorithm is a dynamic multiple hypothesis estimator. It assumes the system obeys one of a finite number of continuous
models at a time but is capable of switching between models at discrete intervals. The algorithm is described comprehensively
in (Bar-Shalom et al., 2004), so only a brief summary will be given here and with emphasis on application to the problem at
hand—GNSS data bit transitions.

Figure 2: The MM algorithm

A flowchart of an example two-hypothesis MM estimator is shown in Figure 2. At the top, prior state estimate vectors



x1(k � 1jk � 1) and x2(k � 1jk � 1) and their corresponding error covariance matrices P1(k � 1jk � 1) and P2(k � 1jk � 1)
are obtained from two component Kalman filters executed in the previous cycle. These are input into a “mixing” function
to compute modified inputs for the next Kalman filter cycle: x1m(k � 1jk � 1), P1m(k � 1jk � 1) and x2m(k � 1jk � 1),
P2m(k � 1jk � 1). Each Kalman filter represents a specific mode, which may differ from the other in the dynamic model or
measurement model (or both). Each filter, using its own measurement model, will then perform a measurement update using
the same measurement z(k) and a time update with its own dynamic model. Likelihood functions Λ1(k) and Λ2(k) are then
evaluated and used to calculate current mode-state (µk) and mixing (µkjk) probabilities, the latter used to commence the next
cycle. The Appendix provides additional detail. The output state estimate vector and error covariance matrix x(kjk) and P (kjk)
are computed using the individual Kalman filter results x1(kjk), P1(kjk), and x2(kjk), P2(kjk) and the mode probability vector
µk.

In our MM application, two modes run in parallel as shown in Figure 3, corresponding to two measurement models with
navigation data bit values d = 1 and d = �1. The Kalman measurement updates for both modes are performed using the same
I and Q measurements. The dynamic models are also the same for both modes, as defined in Section II.1.

Figure 3: MM algorithm in our case

For now, we assume the data bits to be sequentially independent, the mode (bit) transition probabilities are both 1
2 , and the mode

transition matrix is a 2� 2 matrix with each element equal to 1
2 . The “mixing” process shown in Figure 2 for the standard MM

algorithm is not needed in this case because of the uniform structure of the mode transition probability matrix. However, the
MM can also accommodate more general cases, where there is reduced uncertainty in bit transitions, as will be discussed in
Section III.

III. NAVIGATION DATA BIT PREDICTION
Navigation data messages are standardized, well-structured binary bits broadcast by the satellites to communicate with GPS
receivers about ephemerides, almanacs, satellite health status, and other information. For this work, we focus only on the GPS
L1 signal and its ‘legacy’ navigation (LNAV) data bits. The navigation data message is modulated on the carrier at 50 bps and
contains 5 sub-frames, each of which has 300 bits, and each bit is 20 ms in length. Sub-frames 4 and 5 each have 25 separate
pages. Every 30 seconds GPS satellites will transmit one frame: 1500 bits including sub-frames 1, 2 and 3 and one page each
from sub-frame 4 and 5. Thus, collection of the whole navigation data message (superframe) takes at least 12.5 minutes. The
navigation data bit structures are pre-defined in IS-GPS-200H (Dunn, 2013).

1. Upload-robust Data Bit Prediction Strategy
We consider the case where a receiver decodes enough sub-frames before RFI onset to enable partial data bit prediction during
the event. Using navigation data bits collected over several days, we have categorized the bits that remain predictable through
ephemeris cutovers and new uploads. Some bits never change (e.g., preamble bits) or are easily predictable (e.g., TOW and
subframe ID bits). For a number of other parameters (e.g., related with SV clock corrections and certain orbit elements), the
most significant bits do not change. Based on the information gained from the collected data, we have developed a partial bit
prediction strategy to predict only the bits that remain unchanged through navigation data uploads. The strategy is conservative
most of the time because a larger number of bits would remain predictable even through ephemeris cutovers, but it is necessary
to ensure tracking continuity through uploads, which can happen at any time.

Figure 4 shows example data bit prediction maps for the upcoming 5 sub-frames based on the last 5 sub-frames. The data bits
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