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ABSTRACT
In this paper, we develop, implement, and test a new high-integrity frequency-domain measurement error modeling method for
inertial measurement units (IMU). The IMU error modeling method is intended for safety-critical navigation applications. The
method uses both the Allan Variance to identify individual IMU error components and the Power Spectral Density (PSD) to
derive a bounding error time-correlation model. By upper-bounding the sample PSD of individual IMU error components, we
can guarantee a bound on the state estimation error variance. The method is applied using experimental data from a tactical
grade IMU.

I. INTRODUCTION
Global Navigation Satellite Systems (GNSS) can provide continuous worldwide absolute positioning but require visibility of
four or more satellites, which is not always achievable in sky-obstructed environments. Also, GNSS are vulnerable to radio-
frequency interference. In contrast, inertial sensors are not directly impacted by these external factors. Inertial Navigation
Systems (INS) can be used as dead reckoning sensors to estimate displacements over time, but state estimation errors drift due to
the temporal integration of IMU errors. Combining INS and GNSS, for example using a Kalman filter (KF), can simultaneously
limit the drift in INS positioning error and provide continuity through sky obstructions and robustness against GNSS jamming
and spoofing attacks [1]. GNSS/INS integration relies on filtering measurements over time, which requires robust modeling of
stochastic errors over time to ensure navigation integrity.

Analytical integrity risk bounds for time-sequential linear estimators can be derived using autocorrelation function (ACF)
bounding [2]. This approach requires continuous, cumulative storage of all data and estimator coefficients over time, and except



for short, finite-horizon intervals, is unsuitable for KF implementations. The PSD bounding method, unlike ACF bounding,
is not restricted to fixed-interval implementations and is compatible with Kalman filtering [2]. In prior work, we derived
high-integrity models for GNSS errors with uncertain time correlation, including satellite orbit and clock ephemeris errors and
tropospheric delays [3, 4]. But IMU errors remain unaddressed.

In this paper, we develop a methodology to model IMU errors over time using PSD bounding. We identify and bound individual
IMU error components for consistency with prior work and with manufacturer specifications. We implement the method using
experimental data. IMU errors can be modeled as a sum of independent error components [5]. These elements of gyroscope and
accelerometer errors can be analyzed using the Allan Variance (AV) [5–7]. The AV is a time-domain representation originally
derived to study the stability of oscillators. It is often adopted by IMU manufacturers because it allows for the identification of
the different components of the IMU errors. The AV �2

y of a process y, is related to its PSD Sy by the following equation ( [8]):
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In practice, computation of the AV is done using clusters of data within the sampled record of raw sensor measurements.
Depending on how small these clusters are (i.e., how many data points are involved), the AV can identify each noise term
affecting the sensor, making it a very useful approach for manufacturers. Generally, the mapping from �2

y to Sy described in
Equation 1 is not one-to-one (as demonstrated in [9]), meaning that a single AV representation can have multiple corresponding
PSD curves. Most of the error components used to model the INS errors do have a one-to-one mapping between the AV and
PSD domains (as will be shown in Section II), but spectral ambiguity may remain for at least one error source (bias instability).

The work in [2] developed an approach to robust error modeling, through PSD bounding, to ensure KF output integrity. No
such guarantees are available in the AV domain, and models based solely on AVs of IMU errors cannot guarantee estimation
integrity. Therefore, we employ the PSD bounding approach ( [2, 4]).

In the first part of this paper, we present a methodology to model IMU errors using PSDs. IMU specifications are reviewed and
dominant parameters are selected and converted to the PSD domain. Manufacturer specs are used as the starting point and are
then inflated until the model PSDs upper bound the empirical PSDs at all frequencies. The inflated specs are then used as our
final model parameters.

The second part of the paper applies this methodology to an example sensor. Following the procedure detailed in the first part
of the paper, the error data from accelerometers and gyroscopes is analyzed in the frequency domain and used to generate a
high-integrity IMU model. We conclude the paper by comparing our robust error model to the IMU’s manufacturer spec sheet.

II. METHODOLOGY
1. IMU error model structure
IMU errors are complex stochastic processes that can be modeled differently depending on the application of interest. For
high-precision navigation applications, or applications involving long periods of time without external aiding, comprehensive
error models are needed. Such models must include the effects of acceleration sensitivity errors, cross-axis sensitivity errors,
non-orthogonality errors and installation misalignment errors [10]. In this work, we are primarily interested in inertial-aided
applications and will therefore restrict ourselves to an error model structure widely-used for this purpose ( [1, 5–7, 11]),

qm = (1 + sf )qt + b(t) + p(t) + �s(t) (2)

where qm is the measured output, which can be that of an accelerometer or gyroscope. The true value of the variable being
measured qt is impacted by a scale factor error sf , a time-varying bias b, an acceleration/rate random walk (Ac/R-RW) p, and a
velocity/angular random walk (V/An-RW) �s for an accelerometer/gyro, respectively.

When a noisy sensor output signal is integrated, the result drifts over time due to the accumulation of the noise. This drift is
called random walk. For IMU errors, there are two types of random walks: the angular random walk for gyroscopes, and the
velocity random walk for accelerometers. The V/An-RW component is due to thermo-mechanical fluctuations within the sensor
and is modeled as additive white Gaussian noise with zero mean.

IMU sensors can also be impacted by an acceleration RW (for accelerometers) or a rate RW (for gyroscopes). In the rest of this
paper, this term will be called Ac/R-RW. Their time derivatives can be modeled as:

_p(t) = �p(t) (3)



where �p(t) is a white Gaussian process, with zero mean and standard deviation �p.

The bias component can be expressed as:

b(t) = br + bs(t) (4)

The initial bias of an IMU will be different at each power-up due to signal processing initial conditions and physical properties
(thermal, mechanical, and electrical variations). This random variation in initial bias is known as the turn-on bias stability (or
bias repeatability) br.

The bias stability (or bias instability) bs is the time-varying component of the bias and measures how much deviation or drift
the sensor experiences from its starting value. It is a measure of how stable the bias is over a given time period under constant
temperature.

Figure 1 Overview of IMU modeling methodology

2. Modeling of IMU errors components
We evaluate individual manufacturer IMU specifications by measuring their corresponding error components and upper-
bounding them in the PSD domain (e.g. white noise + GMRP + Ac/R-RW). The methodology of this work is captured in Figure
1. We selected the 5 IMU parameters listed in Table 1. These IMU error parameters are recurring in manufacturer spec sheets
and account for the most dominant sources of errors.

Parameters Accelerometer units Gyroscope units
Bias repeatability, �br (1-sigma) mg deg/hr
Bias instability, �bs

(1-sigma) mg deg/hr
Scale Factor Accuracy, sf ppm ppm
Velocity/Angular Random Walk, N0 m/s/

p
hr deg/

p
hr

Acceleration/Rate Random Walk,K m/s/hr3/2 deg/hr3/2
Table 1 IMU model parameters selected for evaluation

For IMUs that do not compensate internally for vibrations or temperature changes, parameters that account for these effects
should be added to Table 1. The following subsections describe how to interpret each of these components in the PSD domain.
To help with those interpretations, Figure 2 shows a representation of inertial error components which can be identified by their
distinct linear behavior in Allan variance plots.

a. Bias repeatability
The bias repeatability can be perceived as an initial bias on the IMU errors. The constant value of this initial bias is modeled as
following a zero-mean Gaussian distribution with standard deviation �br

. Because the mean is removed prior to PSD estimation,
this term has no impact on the PSD bounding process.



b. Bias (in)stability
Bias (in)stability is a flicker noise. But flicker noise cannot be modeled in the state space domain [12]. Instead, bias (in)stability
is modeled as a first order GMP (FOGMP) with standard deviation �bs and time constant � . If �bs is very often provided in
IMU specs, it is rarely the case for � . However, the specs usually provide AV plots of the errors, which can be used to find both
�bs

and � . The bias (in)stability is represented on an AV plot by a zero-slope curve expressed as [8]:

�2
0(�) =

2�2
bs

�
ln 2 : (5)

Since
q

2ln2
� � 0:664, �bs can be determined from the zero-slope portion of the AV-curve using the following equation:

�bs
=

�0

0:664
: (6)

The approximate time constant � of the first order GMP can be extracted from the same portion of the AV curve as illustrated
in Figure 2. The PSD of a first order GMP can then be expressed as [13]

SGMP (f) =
2

�

�2
bs

(2�f)2 + 1
�2

: (7)

c. Velocity/Angular Random Walk
The random walk component of inertial sensor errors is modeled as white noise with PSD expressed as

SWN =
N0

2
; (8)

where N0 is the white noise’s PSD constant. The random noise of a sensor is specified either in terms of its PSD or in terms of
RW (see units in Table 1). The conversion from one to the other is as follows [8]

SWN =

�
RW

60

�2

: (9)

The velocity/angular RW is represented in the AV domain as a line of slope �1=2 expressed as [8]

�2
�1=2(�) =

N0

�
: (10)

The value for N0 can also be read on the AV plot at �=1 s, as shown in the center chart of Figure 2.

d. Acceleration/Rate Random Walk
Unlike the previous two parameters, Ac/R-RW may not be given in IMU specifications. However, if such a process contributes
to sensor error, it will appear in the AV plot as a line with slope 1=2. The line’s equation can be expressed as [8]

�2
1=2(�) =

K2�

3
: (11)

ParameterK can then be found on the AV plot as the value of �1=2 line at �=3 s. The PSD of the acceleration/rate RW, can then
be expressed as

SAc=R�RW (f) =

�
K

2�f

�2

: (12)

The total PSD obtained from the IMU specs can be computed by summing Equations 7, 9, and 12:

SIMU (f) = SWN (f) + SGMRP (f) + SAc=R�RW (f) : (13)



Figure 2 Extracting model parameters from AV plot

e. Robust error modeling
The total PSD SIMU (f) in Equation 13 the models of its component are obtained using specifications and related information
provided by the manufacturer. To ensure estimator integrity, we must validate the models using experimental test data. PSDs of
sampled data measure the actual frequency content of the sum of all the error sources. They are therefore directly comparable
to SIMU (f) in Equation 13. To ensure integrity, the error models actually implemented in the navigation KF must upper bound
both the sample and manufacturer-specified PSDs for all f . However, this by itself is not sufficient because the component
errors are independent and their PSDs must also be bounded individually. In the PSD domain, separating individual error
components is challenging. The AV domain however, allows for a clear separation of each error components.

Equation 1 shows that an upper bound in the PSD domain will automatically result in an upper bound of the AV domain. The
reverse implication will need further work to be proven: does upper bounding individual components in the AV domain result in
an upper bound of their respective PSDs? Reference [9] shows that the inverse mapping of Equation 1 is not always a one-to-one
mapping.

In order to implement the inflated error models in a KF, Equation 2 is linearized about the nominal value of each state, denoted
below by an asterisk,

qt =
1

1 + sf
(qm � b(t)� p(t)� �s(t)) (14)
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.

Setting b� = p� = ��s = s�f = 0, we obtain the following linearized model:

qt = qm � b� p� �s � q�msf : (16)

The final, inflated IMU model parameters can now be used in a GNSS/INS KF. An illustrative state propagation equation for a
simplified, single-position-coordinate navigation problem using an accelerometer can be expressed as26664

_x
_v
_b
_p
_sf

37775 =

26664
0 1 0 0 0
0 0 �1 �1 �q�m
0 0 �1=� 0 0
0 0 0 0 0
0 0 0 0 0
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37775 qm +

26664
0
��s
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�p
0

37775 ; (17)

where:

• �s � N (0; �2
s) is the white noise driving VRW,




