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ABSTRACT

Vulnerability of Global Navigation Satellite Systems (GNSS) users to signal

spoofing is a critical threat to positioning integrity, especially in aviation applica-

tions, where the consequences are potentially catastrophic. In response, this research

describes and evaluates a new approach to directly detect spoofing using integrated

Inertial Navigation Systems (INS) and fault detection concepts based on integrity

monitoring. The monitors developed here can be implemented into positioning sys-

tems using INS/GNSS integration via 1) tightly-coupled, 2) loosely-coupled, and 3)

uncoupled schemes. New evaluation methods enable the statistical computation of

integrity risk resulting from a worst-case spoofing attack – without needing to simu-

late an unmanageably large number of individual aircraft approaches. Integrity risk

is an absolute measure of safety and a well-established metric in aircraft navigation.

A novel closed-form solution to the worst-case time sequence of GNSS signals is de-

rived to maximize the integrity risk for each monitor and used in the covariance

analyses. This methodology tests the performance of the monitors against the most

sophisticated spoofers, capable of tracking the aircraft position – for example, by

means of remote tracking or onboard sensing. Another contribution is a comprehen-

sive closed-loop model that encapsulates the vehicle and compensator (estimator and

controller) dynamics. A sensitivity analysis uses this model to quantify the leverag-

ing impact of the vehicle’s dynamic responses (e.g., to wind gusts, or to autopilot’s

acceleration commands) on the monitor’s detection capability. The performance of

the monitors is evaluated for two safety-critical terminal area navigation applica-

tions: 1) autonomous shipboard landing and 2) Boeing 747 (B747) landing assisted

with Ground Based Augmentation Systems (GBAS). It is demonstrated that for both

systems, the monitors are capable of meeting the most stringent precision approach

and landing integrity requirements of the International Civil Aviation Organization

(ICAO). The statistical evaluation methods developed here can be used as a baseline

xi



procedure in the Federal Aviation Administration’s (FAA) certification of spoof-free

navigation systems. The final contribution is an investigation of INS sensor quality

on detection performance. This determines the minimum sensor requirements to per-

form standalone GNSS positioning in general en route applications with guaranteed

spoofing detection integrity.

xii
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CHAPTER 1

INTRODUCTION

1.1 Spoofing Attacks to GNSS Receivers

The Federal Aviation Administration (FAA) has defined the spoofing attacks

as potential integrity threats to aircraft navigation and Air Tra�c Control (ATC)

tracking systems [2]. Spoofing of Global Navigation Satellite System (GNSS) signals

is a process whereby an external agent tries to control the position output of a GNSS

receiver by deliberately broadcasting a counterfeit signal. The spoofed signal mimics

the original GNSS signal with higher power and thus may go unnoticed by measure-

ment screening techniques used within the target receiver, which ultimately causes

the victim to deduce incorrect position estimates. As a result, the trajectory of the

victim can be controlled through the fake broadcast signals [17].

1.2 The Need for Spoofing Detection

Spoofing attacks are a serious problem for civil GNSS applications, such as

aircraft landing, especially in low visibility, and for existing or near-future unmanned

aerial vehicles (UAVs or drones) operated by postal services, police departments and

others for surveillance purposes. Also many strategic infrastructures such as o↵shore

oil drilling, surveying, electric power grids or communications networks heavily rely on

GNSS for localization, navigation, and time synchronization. Even though military

GNSS users are less susceptible to that problem by means of signal encryption, a

technique called meaconing could be used as a spoofing-like attack against such users

[41]. Meaconing is an attack which involves reception and rebroadcast of original

encrypted GNSS signals.
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Spoofing attacks are rarely observed but the methods of how to spoof are

known and its consequences have been demonstrated to be dangerous. The interest

in GNSS spoofing attacks has risen with recent rumors of the capture of a classified

Lockheed Martin RQ-170 UAV by an Iranian cyberwarfare unit in 2011. It has been

claimed that the UAV was brought down with minimum damage by simultaneous

jamming of military signals and spoofing of civilian signals [47]. Since then, no

known example of a malicious spoofing attack has yet been confirmed. Some proof-

of-concept spoofing tests on standard receivers of a drone [23] and a yacht [5] were

successfully conducted, showing that such attacks drag the vehicle o↵ course without

being detected.

The passing of the FAA Modernization and Reform Act of 2012 emphasizes

that civil aviation use of GNSS is vulnerable to intentional spoofing and the threat

of spoofing is likely to increase. Therefore, the FAA is pursuing mitigations to these

vulnerabilities by proof-of-concept techniques and recommending manufacturers to

consider measures to mitigate and cross-check against independent position sources

or employ other detection monitors using GNSS-aided inertial systems [2].

1.3 Critical Aviation Applications Vulnerable to GNSS Spoofing

With its accurate, continuous, and global capabilities, GNSS o↵ers seamless

satellite navigation that meets the most stringent requirements for aviation users.

Space-based positioning and navigation enables three-dimensional position determi-

nation for all phases of flight: departure, en route, approach, and landing.

Improved aircraft approaches to airports, which significantly increase opera-

tional accuracy, safety, and cost, are now being implemented even at remote locations

where traditional Instrument Landing System (ILS) services are unavailable [36]. Such

systems are called Ground Based Augmentation Systems (GBAS), where satellite sig-
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nals are augmented with ground signals to assist flight categories (CAT) from CAT

I precision approach to CAT III precision landing with guaranteed accuracy (at the

meter level) and integrity [44]. A GBAS facility at each equipped airport provides

local navigation satellite correction signals, and avionics in each aircraft process and

provide guidance and control based on the satellite and GBAS signals. Other aviation

applications such as autonomous airborne refueling, autonomous aircraft shipboard

landing, formation flight etc., require centimeter-level accuracy. Such high-accuracy

applications require relative GNSS positioning where raw GNSS measurements are

transmitted between vehicles, and the inter-vehicle position di↵erences are calculated

[26, 24].

With the increase in use of GNSS in such mission-critical aviation applica-

tions, vulnerability of GNSS users to signal spoofing is a serious threat to positioning

integrity where the consequences are potentially catastrophic. Spoofing may even

become a more serious risk to aviation in the near future with the rollout of the

GNSS-based Next Generation ATC system, and the corresponding reduction in re-

liance on ground-based radar systems by ATC. The spoofing detection methods and

analysis introduced in this dissertation focus particularly on aircraft approach and

landing using GBAS and relative GNSS positioning operations, since they are the

most critical phases of flight. However, the same monitoring concepts can be applied

to any other GNSS-based application, including terrestrial or maritime operations.

1.4 Background on Anti–Spoofing Methods

Numerous anti-spoofing techniques have been developed in the last decade

and the strengths and vulnerabilities of these existing methods have been discussed

in [19, 22, 41]. These include cryptographic authentication techniques employing

modified GNSS navigation data [64, 27, 15]; spoofing discrimination using spatial

processing by antenna arrays and automatic gain control schemes [1, 29, 35]; GNSS



4

signal direction of arrival comparison [31], code and phase rate consistency checks

[34], high-frequency antenna motion [42], and signal power monitoring techniques

[18, 63]. Some of these methods are indeed e↵ective but they have some compu-

tational, logistical and physical limitations for aviation applications. For example,

the spatial processing techniques increase the hardware complexity as it requires the

installation of additional sophisticated antenna-arrays. Most of the powerful crypto-

graphic authentication techniques require some modifications to the existing GNSS

infrastructure, therefore they do not seem to be applicable in the short term. The

direction of arrival discrimination and signal power monitoring methods require com-

putationally intensive signal processing and are vulnerable to sophisticated spoofers

who are capable of directional diversity in transmission and estimating the original

signal power. Finally, the downside of using high frequency antenna motion for de-

tection is that it requires the elimination of all the other vibration sources, which is

practically impossible in an aircraft.

Augmenting data from auxiliary sensors such as Inertial Measurement Units

(IMU), baro-altimeters, and independent radar sensors to discriminate spoofing has

also been proposed in [62, 23, 53, 52]. The first thorough description of the perfor-

mance of IMU-based monitoring against spoofing attacks in terms of integrity risk

was introduced in [25]. In this dissertation, IMUs are investigated as a direct means

of detecting GNSS spoofing attacks since they are co-located with GNSS receivers to

support essentially all aerospace, terrestrial, and maritime navigation applications,

and therefore do not require additional cost or modification to existing positioning

systems.

1.5 RAIM–Based INS Monitor to Detect GNSS Spoofing Attacks

In this dissertation, we develop and evaluate novel spoofing monitors for

GNSS-based navigation systems that are equipped with Inertial Navigation Systems
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(INS). INS is a form of dead-reckoning that relies on IMU (accelerometers and gyro-

scopes) to measure specific force (acceleration) and angular velocity along 3 perpen-

dicular axes [12]. An approximate position can be continuously determined in relation

to a known starting position, velocity, and attitude (pitch, roll, yaw) by integrating

these measurements over time. However, integration causes errors to grow over time,

so in most of the navigation applications, GNSS receiver is coupled with INS for

navigating, guiding and controlling vehicles. Depending on the INS quality (e.g.,

navigation, tactical, industrial, or automative-grade) and its integration scheme with

GNSS receivers (e.g., tightly, loosely-coupled, or uncoupled), the vehicle estimator

generally prioritizes GNSS solution when satellite signals are available. Upon GNSS

signal interruption, INS dead-reckoning solution can be used to continue guidance.

Spoofing signals inject counterfeit pseudoranges into the receiver measure-

ments. These measurements might be deceptive and consequently lead to an unrea-

sonable position solution. Most GNSS receivers perform integrity monitoring when

redundant satellites are available, to detect and exclude the inconsistent measure-

ments, which is known as Receiver Autonomous Integrity Monitoring (RAIM) [39].

RAIM monitors the GNSS estimator residuals for fault detection, which is a rudi-

mentary defense against spoofing. It is e↵ective only in unsophisticated spoofing

scenarios where only one or two GNSS signals among several authentic signals are

spoofed; otherwise, if the majority of the GNSS signals are spoofed, it might reject

the authentic measurements to decrease the residual, which is undesirable. In this

dissertation, since we assume that all GNSS measurements can simultaneously be

spoofed in the worst-case possible, the redundancy required for detection is provided

through INS measurements, unlike conventional usage of RAIM where detection is

provided through satellite redundancy.

1.6 Integrity Risk for Monitor Performance Evaluation
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Table 1.1. Performance Requirements for Landing of Civil Aircraft [37, 51]

Phase of Flight
Alert Limits (4 � 5�)

Integrity Risk
Vertical Horizontal

En route N/A 3.7 km 1 ⇥ 10
�7

/h

En route Terminal N/A 1.85 km 1 ⇥ 10
�7/h

Precision Approach CAT I 10 m 40 m 2 ⇥ 10
�7

/150 s

Precision Landing CAT II-III 5.3 m 17 m 1 ⇥ 10
�9

/150 s

To statistically evaluate the performance of the INS monitor, we compute the

integrity risk, which is a measure of the reliability of the navigation solution [11].

Integrity risk is quantified as the probability that the system provides Hazardously

Misleading Information (HMI) [43]. More specifically for the GNSS spoofing detection

problem, HMI occurs when the position error exceeds a pre-defined alert limit, but

the monitor does not trigger an alert.

The International Civil Aviation Organization (ICAO) identifies the standards

for the most common aircraft approach modes, the associated alert limits, and the

maximum integrity risk requirements as in Table 1.1. For example, the CAT I preci-

sion approach phase of the flight should be performed with integrity assurance such

that undetected exceedance of 10 m vertical position error occurs no more frequently

than once in 20 million approaches. In the performance evaluation and verification

of the INS monitor conducted in this work, this particular set of requirements is used

as the standard.

1.7 Dissertation Contributions

There are five main contributions in this dissertation, which are outlined in

the following subsections.

1.7.1 Developing INS Monitors for GNSS Spoofers. We develop novel

INS monitors for di↵erent INS/GNSS integration schemes including tightly-coupled,
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loosely-coupled, and uncoupled. Their statistical reliability performances are evalu-

ated and validated for several high-integrity GNSS aviation applications under worst-

case spoofing attacks. A novel closed-form solution to the worst-case time sequence

of GNSS fault is derived for each monitor and used in the performance analyses.

The specific application of interest is aircraft precision approach and landing, but the

methods introduced here are also applicable to other GNSS positioning systems that

are co-located with inertial sensors.

1.7.2 Leveraging Vehicle Dynamics in Spoofing Detection. We quantify

the INS monitor’s sensitivity to the spoofer’s inability to track high-frequency small

disturbances (e.g., wind gusts and aircraft response to autopilot actions) on the ac-

tual aircraft trajectory. Spoofing integrity of the monitor is quantified by deriving

the statistical dynamic response of an aircraft to a well-established vertical wind gust

power spectrum. The main contribution is the development of a rigorous methodology

to compute upper bounds on the integrity risk resulting from a worst-case spoofing

attack – without needing to simulate individual aircraft approaches with an unman-

ageably large number of specific gust disturbance profiles (e.g., 109 to meet aircraft

precision landing integrity requirements). In the gust analysis, a residual-based INS

monitor is employed with a general batch estimator. Using the residual-based detector

it is possible to analytically determine the worst-case sequence of the spoofed GNSS

measurements – that is, the spoofed GNSS signal profile that maximizes integrity risk

[20].

1.7.3 Accounting for Spoofers Capable of Tracking Position. The INS mon-

itor is extended to tightly-coupled Kalman filter implementations, which are widely

used in relative navigation applications such as aircraft shipboard landing. Its perfor-

mance is verified against worst-case spoofing attacks, even when the spoofer has the

ability to estimate the real-time position of the aircraft. Spoofing detection is accom-
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plished by monitoring the Kalman filter innovations in tightly-coupled INS/GNSS

mechanizations. Two main contributions here are the derivation of a mathemati-

cal framework to quantify the post-monitor spoofing integrity risk and an analytical

expression of the worst-case sequence of spoofed GNSS signals, respectively. The

simulation results show that GNSS spoofing is easily detected, with high integrity,

unless the spoofer’s position-tracking devices have unrealistic, near-perfect accuracy

and no-delays.

1.7.4 Validating the INS Monitor for GBAS Landing System. Extending

the methodology developed for the tightly-coupled INS monitor, we evaluate the per-

formance of the INS monitor in the loosely-coupled integration which is prescribed

in GBAS systems. Simulating a worst-case spoofing attack to GBAS-assisted final

approaches of a Boeing 747, we show that the loosely-coupled INS monitor e�ciently

detects spoofing attacks with the integrity assurance satisfying the ICAO require-

ments. Also, the INS monitor performance in di↵erent INS/GNSS integrations is

compared by quantifying trade-o↵s between the loosely and tightly-coupled naviga-

tion systems.

1.7.5 Relating Integrity Risk to INS Sensor Requirements. Even though

loose and tight integration schemes are widely used for positioning during aircraft

approaches and landings, in some en route general aviation (e.g., drones) and maritime

(e.g., large ships) applications, standalone GNSS positioning is used for guidance [5].

In such implementations, GNSS spoofing monitoring can be performed by using INS

that is uncoupled with GNSS.

The final contribution is the investigation of the impact of INS sensor quality

on performance of the uncoupled INS monitor. To do that, we first derive the worst-

case spoofing fault for a standalone GNSS receiver. Utilizing this during a terminal

en route flight of Boeing 747, we then compute the integrity risk over time when
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using the two di↵erent quality IMUs: a navigation-grade and a tactical-grade (lower

quality), respectively. This sensitivity analysis determines the minimum IMU sensor

(used in the uncoupled INS monitor) requirements to perform a standalone GNSS

positioning with guaranteed spoofing integrity.

1.8 Dissertation Outline

After this introductory chapter, Chapter 2 constructs the GNSS measurement

and INS kinematics models, and explains possible INS/GNSS integration schemes

for vehicle guidance. Chapter 3 describes the INS airborne monitors (against GNSS

spoofing) which are developed for navigation systems equipped with INS integrated

with GNSS receivers in tightly-coupled, loosely-coupled, and uncoupled schemes.

Chapter 4 quantifies the monitor’s sensitivity to the spoofer’s lack of knowledge of

small disturbances (e.g., wind gusts) a↵ecting the actual aircraft trajectory. Chapters

5 and 6 evaluate the performance of a more realistic Kalman filter-based monitor im-

plementation for autonomous shipboard landing and GBAS-assisted aircraft approach

and landing example applications, which are the major emphasis in this dissertation.

An analytical expression of the worst-case fault is derived for the Kalman filter-based

monitors. Finally, in Chapter 7, we investigate the impact of INS quality (e.g., tacti-

cal grade, navigation grade, etc.) on spoofing detection performance of an uncoupled

INS monitor. The monitor performance is demonstrated with a spoofing attack to a

standalone GNSS receiver supporting en route guidance. Finally, Chapter 8 provides

conclusions and opportunities for future research.
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CHAPTER 2

NAVIGATION SENSOR MODELS

This chapter presents the mathematical models of INS and GNSS to facilitate

the later derivation of the GNSS/INS integration algorithms. Section 2.1 constructs

the measurement models for standalone and di↵erential GNSS implementations in

mission-critical applications, which are highly susceptible to spoofing attacks. Within

several GNSS constellations, we derive the measurement models for the most widely

used civilian Global Positioning System (GPS) with emphasis on material relevant

to the dissertation’s topics. Section 2.2 describes the INS mechanization including

a kinematic model of the user vehicle and an IMU measurement model. Then, the

INS/GNSS integration schemes are briefly discussed in Section 2.4

2.1 GNSS Measurement Models

GPS provides two types of instantaneous measurements: the pseudorange code

⇢ and carrier phase �, which are biased estimates of the range l between user and

satellite. The ranging accuracy is limited by error sources including uncertainties in

satellite clocks and positions, signal propagation delays in the ionosphere and tropo-

sphere, user receiver thermal noise and multipath. Some of the spatially correlated

error sources (e.g., the ionosphere and troposphere) can be reduced to negligible lev-

els in Di↵erential GPS (DGPS) by using raw measurements or di↵erential corrections

broadcast from a nearby reference receiver, which is discussed in Sections 2.1.2 and

2.1.3. Depending on the GPS application and how these measurements are used,

the total GPS positioning accuracy may range from a few centimeters (carrier-phase

DGPS) to 10 meters or more (standalone GPS) [32].

The code phase measurement at the user receiver (denoted by the subscript
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u) for satellite i is expressed as

⇢
i
u = l

i
u + ⌧u � ⌧

i + I
i
u + T

i
u +M

i
⇢u + ⌫

i
⇢u (2.1)

where ⇢ i
u is the L1 pseudorange raw measurement, l iu is the true range from the user

receiver to the satellite, ⌧u is the user receiver clock bias in units of length, ⌧ i is the

satellite clock bias, I i
u is the L1 ionospheric delay error, T i

u is the tropospheric delay

error, ⌫ i
⇢u is the user receiver thermal noise, and M

i
⇢u is the code multipath in units

of length.

The carrier phase measurement at the user receiver for satellite i is written as

��
i
u = l

i
u + ⌧u � ⌧

i � I
i
u + T

i
u + �N

i
u +M

i
�u

+ ⌫
i
�u

(2.2)

where �i
u and N

i
u are the L1 carrier phase raw measurement and integer cycle ambi-

guity in units of cycles, respectively; �, ⌫ i
�u
, and M

i
�u

are the L1 carrier signal wave-

lengths and receiver thermal noise, and multipath in units of length, respectively.

It is commonly assumed that the receiver thermal noises ⌫⇢ and ⌫� are zero-mean

and white random variables whereas the multipath errors M⇢ and M� are zero-mean

colored noise sequences which are usually modeled with a first order Gauss Markov

process having a time constant ⌧m.

2.1.1 Standalone Systems. The term standalone GPS is used when the user

position is estimated without using a reference station. In the absence of the reference

station corrections, a user corrects the raw code phase (pseudorange) measurements

⇢
i
u for the known errors using information available in navigation data messages broad-

cast from the satellites. These include estimates of satellite clock bias and ionospheric

delay. Also, the tropospheric errors is attenuated by using a tropospheric model [38].

Although further correction can be achieved by smoothing the code using the carrier

signal, and using dual frequency (L1-L2) signals [32], for simplicity we consider single

frequency (L1) and code phase-only measurement model for the standalone systems.
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î2

î1
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Figure 2.1. Satellite navigation coordinates including inertial frame (I), earth-centered
earth-fixed frame (E), ground reference-fixed north-east-down navigation frame
(N), and user vehicle-fixed body frame (B).

After correcting the L1 pseudorange for the signal errors using the navigation

message, (2.1) is reduced to

⇢
i
c,u = l

i
u + ⌧u +M

i
⇢u + ⌫

i
⇢c,u (2.3)

where ⇢ i
c,u is the corrected L1 pseudorange measurement and ⌫ i

⇢c,u is remaining residual

error after the corrections (e.g., 1  �⌫⇢c,u  6 m) [32].

Let r
(n)
u and r

(n)
i be the positions of the user receiver and satellite i relative

the center of Earth, respectively. The superscripts with parenthesis on the vectors

are used to indicate their frame of representation. In this work, it is selected as the

navigation frame (N) fixed at a local ground reference (Figure 2.1) to be consistent

with the INS mechanization, which is discussed in Section 2.2. Then, the true range

l
i
u in (2.3) can be expressed as

l
i
u = ||r(n)

i � r
(n)
u ||. (2.4)
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The satellite position r
(n)
i can be computed using the orbit ephemeris parameters

in the navigation data message. Using the definition in (2.4) and a Taylor series

expansion, the nonlinear measurement model in (2.3) can be linearized about a prior

(nominal) assumed user state, r
⇤(n)

u and ⌧
⇤
u such that l

⇤i
u = ||r(n)

i � r
⇤(n)

u ||; and the

standalone measurement equation for k-visible satellites is expressed in vector form

[32] as

2

664

⇢
1
c,u � l

⇤1
u � ⌧

⇤
u

...

⇢
k
c,u � l

⇤k
u � ⌧

⇤
u

3

775

| {z }
⇢

=

2

664

�e
(n)T

1
...

�e
(n)T

k

3

775

| {z }
G

�r
(n)
u +

2

664

1
...

1

3

775

|{z}
1

�⌧u +

2

664

M
1
⇢u
...

M
k
⇢u

3

775

| {z }
m⇢

+

2

664

⌫
1
⇢c,u
...

⌫
k
⇢c,u

3

775

| {z }
⌫⇢

(2.5)

where e
(n)
i is the line-of-sight unit vector from the prior position of the user r

⇤(n)

u

to the known position r
(n)
i of the satellite i; �r(n)

u and �⌧u are the deviations from

the prior position and receiver clock bias of the user, respectively; ⌫⇢ ⇠ N (0,V ⇢)

is the standalone measurement error vector and its diagonal covariance matrix V ⇢

is obtained from Table F.2. It should be noted that more accurate values of l⇤
i

u ’s

(1  i  k) are obtained through iterated solutions of (2.5).

2.1.2 Relative Navigation Systems. Relative navigation is a specific DGPS

implementation for high-precision critical applications. It can be implemented when a

reference station (in the vicinity of the user) broadcasts its raw code ⇢ir and carrier �i
r

measurements to the user through a data link (Figure 2.2-a). The user incorporates

these measurements to mitigate the GPS errors and estimate its position relative to

the reference station. The reference station here is not necessarily a fixed station; it

can be a moving platform such as the carrier ship for autonomous shipboard landing

[26] or an aircraft for autonomous airborne refueling [24].

The following derivation is based on the relative positioning implementation

of DGPS using the L1 frequency only. Similar to those in (2.1) and (2.2) for the user
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GBAS

⇢u, �u

⇢r, �r

�⇢r

⇢u, �u

(a) (b)

Figure 2.2. Examples of DGPS applications (a) Relative Navigation Systems – Au-
tonomous precision shipboard landing and (b) Ground Based Augmentation Sys-
tems (GBAS) – Aircraft approach and landing.

receiver, the raw code and carrier phase measurements at the reference receiver are

⇢
i
r = l

i
r + ⌧r � ⌧

i + I
i
r + T

i
r +M

i
⇢u + ⌫

i
⇢r (2.6)

��
i
r = l

i
r + ⌧r � ⌧

i � I
i
r + T

i
r + �N

i
r +M

i
�u

+ ⌫
i
�r

(2.7)

where subscript r refers to the reference receiver.

When the user receives the time tagged reference station measurements, it

forms di↵erenced code and carrier phase measurements by subtracting its measure-

ments from the reference measurements. Defining the first di↵erence operation as

4i
ur = 4i

u �4i
r, the single di↵erence (SD) code ⇢

i
ur and carrier measurements �i

ur for

the satellite i can be expressed as

⇢
i
ur = l

i
ur + ⌧ur +M

i
⇢ur + ⌫

i
⇢ur (2.8)

��
i
ur = l

i
ur + ⌧ur + �N

i
ur +M

i
�ur

+ ⌫
i
�ur

. (2.9)
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One can eliminate the receiver clocks bias terms ⌧ur in (2.8) and (2.9) by taking the

di↵erence of the single di↵erences for the satellites i and j, which is referred to as

double di↵erencing (DD) (i.e., 4ij
ur = 4i

ur � 4j
ur).

Assuming ||~r|| << l
i
r in Figure 2.1, the true range di↵erence l

i
ur in (2.9) can

be approximated in terms of ~r (the vector from the reference to the user receiver) as

l
i
ur = �e

(n)T

i r
(n). Then, di↵erencing all the measurements from the satellite 1, the

linearized DD code ⇢ i1
ur and carrier measurements � i1

ur for k visible satellites (2  i  k)

can be stacked in vector form as

2

66666666664

⇢
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⇢
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��
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1 )T
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1 )T
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k � e
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| {z }
G⇢�

r
(n) +

2
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0 · · · 0
...

. . .
...

0 · · · 0

� · · · 0
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. . .
...

0 · · · �

3
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N
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N
k1
ur
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775

| {z }
n⇢�

+

2

66666666664

M21
⇢ur
...

Mk1
⇢ur

M21
�ur

...

Mk1
�ur

3

77777777775

| {z }
m⇢�

+

2

66666666664

⌫
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⇢ur
...
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k1
⇢ur

⌫
21
�ur

...

⌫
k1
�ur

3

77777777775

| {z }
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(2.10)

where ⌫⇢� ⇠ N (0,V⇢�) is the DD receiver thermal noise error vector and its covariance

matrix V⇢� is obtained using the SD standard deviations given in Table F.2; m⇢� ⇠

N (0,Pm⇢�
) is the DD multipath error vector having a covariance matrix of Pm⇢�

,

and n⇢� is the DD integer cycle ambiguity state vector.

For consistency with INS kinematics linearized about a nominal trajectory,

which will be explained in Section 2.2, we define r
(n) = r

⇤(n)
+ �r

(n) where r
⇤(n)

is

the nominal user position relative to the reference position, and use the perturbation

form of (2.10) as

z
0

⇢� � G⇢�r
⇤(n)

| {z }
z⇢�

= G⇢� �r
(n) + Dn⇢� + m⇢� + ⌫⇢�. (2.11)

2.1.3 Ground Based Augmentation Systems. Ground Based Augmentation
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+
+

1

1 + ⌧hs
⌧h s
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Figure 2.3. Block diagram of the continuous carrier-smoothing system (Hatch filter).
The inputs ⇢(t) and ��(t) are the code and carrier measurements, respectively.
The output of the filter ⇢(t) is the carrier-smoothed code measurement. ⌧h is the
filter time constant.

Systems (GBAS) are a specific application of code-based DGPS technology which

serves as the next generation navigation aid for aircraft precision approach and land-

ing with the objective to replace current Instrument Landing System (ILS).

GBAS is composed of three primary subsystems (Figure 2.2-b): a) satellites,

which produce ranging signals; b) ground, which provides a broadcast containing

di↵erential corrections; c) airborne Position and Navigation (PAN) equipment, which

receives and processes the GBAS signals to compute and output a position solution.

The ground and PAN simultaneously run smoothing (Hatch) filters (Figure 2.3) to

obtain carrier-smoothed pseudoranges with a filter time constant ⌧h = 100 s. The

ground broadcasts di↵erential corrections �⇢ i
r for the carrier-smoothed code, which

are used to correct the airborne carrier-smoothed code ⇢ i
u [49].

The di↵erentially corrected smoothed code ⇢ i
c,u = ⇢

i
u +�⇢ i

r is expressed as

⇢
i
c,u = l

i
u + ⌧u + ⌫

i
⇢c,u

(2.12)

and the linearized form of (2.12) for k visible satellites can be stacked to form the

GBAS measurement model as
2
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(2.13)
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where ⌫⇢ ⇠ N (0,V ⇢) contains the ground, airborne, and signal-in-space errors and

its diagonal covariance matrix V ⇢ is defined as a function of elevation of each satellite

in Appendix C. It should be mentioned after the carrier-smoothing and di↵erential

corrections, the integer cycle ambiguities drop out and receiver thermal noise and mul-

tipath on the code are smoothed and attenuated since the Hatch filter time constant

is to be larger than the multipath time constant (i.e. ⌧h > ⌧m).

2.2 INS Mechanization

INS is a self-contained dead reckoning navigation system based on integrating

acceleration and angular rate measurements from the IMU to provide user position,

velocity and attitude information over time. INS mechanization equations represent

a kinematic model where the inputs are the IMU measurements (inertial acceleration

and angular velocity), and the outputs are the aircraft’s position, velocity and attitude

in a frame of interest. In this section, we derive the kinematic model and describe

how to relate it to the IMU measurement model.

2.2.1 INS Kinematic Model. Before starting linearization of INS kinematics,

the main assumptions are:

1. Since the main motivation of this work is detecting GNSS spoofing attacks in

aircraft landing approaches, we integrate INS with DGNSS. For consistency

and simplicity in the derivation of the mechanization equations, we define the

frame of interest (navigation frame) as being fixed at a reference station (e.g.,

airport-based GBAS station, shipboard platform etc.) having axes in the north,

east, and down directions as in Figure 2.1.

2. The position vector r of the aircraft in the mechanization equations is with

respect to the position of the reference station.

3. The velocity of the aircraft v is not the inertial velocity but the ground velocity.
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4. The gravity vector error variations are not modeled in the velocity error equation

since their contribution over the duration of an aircraft approach is negligibly

small.

Using the assumptions above, the nonlinear kinematic equations of the aircraft

[12] can be obtained as

ẋn ,

2

664

ṙ
(n)

v̇
(n)

Ė
(n)

3

775 =

2

664

v
(n)

N
R

Bf (b) � 2!(n)
ie⇥v

(n) + g
(n)

Q
�1
BE

�
!

(b)
ib � B

R
N

!
(n)
ie

�

3

775 (2.14)

where the INS state vector xn is composed of position r relative to reference station,

ground velocity v, and attitude (Euler angles) E. Also, N
R

B is the rotation matrix

from body to navigation frame, QBE is the matrix that transforms Euler angle rates

to body rotation rates [12], and !ie and !ib are the angular velocity vectors of earth

and angular velocity of body with respect to I-frame, respectively. !ie⇥ is the skew

symmetric matrix form of !ie, and f and g are the specific force and gravitational

acceleration acting on the aircraft, respectively. Note that the superscripts with

parentheses refer to the frame in which the vector is expressed (see Figure 2.1).

The INS kinematic model is linearized about a nominal constant velocity tra-

jectory assuming small deviations about the nominal trajectory. Expressing all the

variables in (2.14) in perturbation form, the position and velocity error equations

become [12]
�ṙ

(n) = �v
(n) (2.15)

�v̇
(n) = N

R
B⇤
f ⇤(b)⇥ �E + N

R
B⇤
�f (b) � 2!

(n)
ie⇥�v

(n) (2.16)

where f ⇤(b)⇥ is the skew symmetric matrix form of specific force acting on aircraft flying

along the nominal trajectory, and N
R

B⇤
is the rotation matrix from the nominal B-

frame to N -frame.
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Unlike the widely used techniques in [12, 45, 61], we use a di↵erent method

for the attitude linearization that is more consistent with the velocity and position

linearizations and is easier to implement in the dissertation’s specific applications of

interest. Extracting the last row of (2.14) gives the nonlinear attitude equation as

Ė
(n)

= Q
�1
BE

h
!

(b)
ib � B

R
N

!
(n)
ie

i

| {z }
s

. (2.17)

Knowing that the transformation matrices B
R

N and QBE in (2.17) are functions of

attitude vector E
(n) (i.e., Euler angles) and using the definition of s in (2.17), we

can expand the deviation in attitude rate �Ė
(n)

using a Taylor Series to linearize the

attitude equation as
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where s
⇤ is the nominal value of s and �Q�1

BE and �BRN can be written in terms of

�E
(n) as
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and
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respectively. Let us define a matrix K
⇤ containing only constant nominal parameters

as

K
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where defining the attitude vector (3 ⇥ 1) as E
(n) = [⇠, ✓, ]T where ⇠, ✓, and  are

the roll, pitch, and yaw angles, respectively; the partial derivatives (9 ⇥ 3) can be

obtained as

@Q
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and
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respectively. Substituting (2.19), (2.20), and (2.21) into (2.18) yields attitude error

equation as
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. (2.24)

The overall linearized INS kinematic model can then be expressed in vector form as
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where xn is referred to as the INS kinematic state vector, F n is the plant matrix

of the kinematic model, Gu is the input coe�cient matrix, and u is the variation

of IMU measurements from the nominal values, which are the deviations in specific

force and angular velocity of the aircraft. Note that all the superscripts ⇤ refer to

constant matrices evaluated at nominal values.

2.2.2 IMU Measurement Model. A strapdown IMU typically consists of three

gyroscopes and three accelerometers rigidly and orthogonally mounted on a sensor

frame installed on a vehicle. They measure the deviations in specific force and angular

velocity, and the IMU measurement ũ is expressed in terms of u in (2.25) as

ũ = u + b + ⌫n (2.26)

where ⌫n is a 6⇥ 1 vector including accelerometer and gyroscope white noises, which

are uncorrelated and zero-mean, and b is a 6⇥ 1 IMU bias vector that is modeled as

a first order Gauss Markov process as

ḃ = F b b + ⌘b (2.27)

where ⌘b represents the bias driving white noise and F b is a diagonal bias dynamic

matrix, the elements of which are the negative inverses of the bias time constants of

the sensors.
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Using (2.26), we augment the IMU dynamics in (2.27) with the kinematic

model in (2.25), which yields
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(2.28)

Defining w = Gww, the discrete form of the INS model in (2.28) is written as

xk = �xk�1 + � ũk�1 + wk�1 (2.29)

where � is the state transition matrix of the process model F , � is the discrete

form of Gũ using a zero-order-hold on the input, wk ⇠ N (0,W k) is the augmented

process noise, and W k is the covariance matrix of wk. The IMU measurement ũk is

a deterministic input to the INS model in (2.29), which may be induced by external

inputs or disturbances such as autopilot commands and wind gusts.

2.3 IMU Grades

Inertial sensors can be grouped into one of the following four performance cate-

gories: 1) Marine/Navigation, 2) Tactical, 3) Industrial, and 4) Consumer/Automative

grades [10]. Except for INS systems customized for long-range strategic ballistic mis-

siles, the marine-grade is the best commercially available IMU, typically used on

ships, submarines, and some spacecraft, providing an unaided solution that drifts less

than 1.8 km per day. Navigation (or aviation) grade has slightly lower accuracy than

the marine grade and are typically used on commercial airliners and military aircraft.

A navigation grade IMUs are designed to satisfy a maximum position drift of 1.5

km in the first hour of operation [61]. Unlike the marine and navigation-grade IMUs

which are suitable for long-range guidance, a tactical-grade IMU can only provide

useful inertial navigation for only a few minutes. However, long-term guidance can

be achieved by integrating it with GPS. These systems are typically used in guided

weapons and unmanned aerial vehicles (UAV).
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Table 2.1. The e↵ect of IMU grade in horizontal position drifts over several operation
durations [28]

IMU Grade 10 sec 1 min 1 hr

Navigation 12 mm 0.44 m 1.6 km

Tactical 150 mm 5.3 m 19 km

Industrial 1.5 m 53 m 190 km

Automative 60 m 2.2 km 7900 km

The lowest grade of inertial sensors is often referred to as automotive grade,

which are not accurate enough even when integrated with other navigation systems

such as GPS. Typically these sensors are used as part of an industrial (MEMS) grade

sensor, or just as a motion detector such as anti-lock braking systems. The main

di↵erence between automotive and industrial grade IMUs is due to the quality of

sensor calibration. Smartphone applications use industrial grade sensors. Sometimes,

the same industrial grade IMU is sold as automotive grade without calibration. Table

2.1 is an overview of the typical errors in horizontal position for each grade of IMU.

2.4 INS/GNSS Integration Schemes and Related Applications

It is widely known that INS is complementary to GNSS since it is impervious to

jamming, spoofing, and blockage of radio signals; therefore, INS systems are crucial

to help maintain GPS navigation integrity and continuity. Also, the INS coupling

with GPS provides a navigation solution that has the high bandwidth of the inertial

sensors, which improves the performance of controller (i.e., autopilot). On the other

hand, the position output of GPS when it is available, is stable and reliable whereas

INS position outputs drift over time due to the integration of imperfect measurement

errors. Nevertheless, the two systems, for example, can be coupled in such a way that

INS errors are calibrated by GPS when satellite signals are available. As a result, any

subsequent temporary GPS signal outage can be bridged by relatively accurate INS

position outputs.
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GPS and INS can be coupled using a variety of integration schemes. These

range from simple loosely coupled integration to complex ultra-tightly coupled meth-

ods in which the INS directly aids the GNSS tracking loops [61]. In this work, we

focus on the most widely used implementations in aerospace, terrestrial, and maritime

navigation application: 1) tight 2) loose, and 3) uncoupled integrations. The tightly-

coupled integration is a well-established method that is suitable for relative navigation

systems (e.g., aircraft shipboard landing, autonomous airborne refueling, formation

flight etc.) where both raw di↵erential code and carrier measurements are available

at the user. These raw DGNSS measurements are directly fed into INS through a

Kalman filter. This provides far superior performance to loosely coupled systems

but without the excessive cost and complexity of the ultra-tight systems. Unlike the

relative navigation systems, for the local area augmentation systems (e.g., GBAS-

assisted aircraft landing etc.) where only the DGNSS output position estimates are

provided to the user as a navigation solution, the loosely coupled integration is un-

avoidable. The advantage of the loose integration method is mainly its simplicity in

implementation relative to the tightly coupled integration. Although the loose and

tight integration strategies are the most commonly used methods, in some maritime

and general aviation en route navigation applications (e.g., drones, autonomous cruise

boats and large ships etc.), the coarse autopilot is typically driven by GNSS feedback,

which is not coupled with INS [5]. Uncoupled integration implies no data feedback

from either instrument to the other. The details of these integration schemes are

presented when introducing the proposed INS monitors against GNSS deceptions in

Chapter 3.



24

CHAPTER 3

INS AIRBORNE MONITORS AGAINST GNSS SPOOFERS

This chapter introduces novel airborne monitors (detectors) that operate con-

tinuously to detect spoofing attacks on GNSS receivers by using INS measurements.

The proposed detectors here are simple and e�cient and can be directly implemented

on top of any type of INS/GNSS integration (e.g., tightly, loosely-coupled, and un-

coupled) without requiring any modification to the existing compensator system.

operates continuously

3.1 Kalman Filter Innovations–Based Monitors

In this section, we propose an innovations-based monitor for systems where

INS and GNSS are coupled (loosely or tightly) in a Kalman filter to obtain state

estimates (position, velocity, and attitude) feeding an autopilot. Spoofing detection

is accomplished by monitoring the Kalman filter innovations. First, the tightly and

loosely-coupled estimators are briefly explained, which will be needed later for the

performance evaluation of the monitor; then, the detector algorithm for them is de-

fined.

3.1.1 Tightly–Coupled INS/GNSS Estimator. Tightly-coupled mechanization

of INS/GNSS through a Kalman filter is widely used in relative navigation systems

applications [26]. The estimator introduced in this section is an example implementa-

tion where both di↵erential code and carrier measurements are available to the user,

which is also equipped with inertial sensors (i.e., IMU).

Recalling that the DD GNSS measurement equation and INS model were pre-
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viously derived (2.11) and (2.29) as

z⇢�k = G⇢� �rk + Dn⇢�k
+ m⇢�k

+ ⌫⇢�k
(3.1)

and
xk = �xk�1 + � ũk�1 + wk�1, (3.2)

respectively, where xk =
⇥
�rk, �vk, �Ek, bk

⇤T
. It should be mentioned that the mul-

tipath m⇢� in (3.1) can be modeled as a first order Gauss Markov process and the

cycle ambiguity n⇢� in (3.1) is constant assuming there are no cycle slips.

Defining a vector x
0
k =

⇥
�vk, �Ek, bk

⇤T
, the DD GNSS ranging measurements

in (3.1) and INS model in (3.2) can be tightly coupled through a unified Kalman filter

with the measurement equation
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where Hk is the observation matrix of the augmented measurement model, and a

process model of
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(3.4)

where �m is a diagonal multipath state transition matrix, the elements of which

are e
��t/⌧m where ⌧m and �t are the multipath time constant and sampling time,

respectively, ⌫m is the DD multipath driving noise vector which is white and its

covariance matrix V m can be obtained using the SD standard deviations given in

Table F.2. wxk ⇠ N (0,Wxk) is the augmented process noise having a covariance of

Wxk . The Kalman filter state vector xk in Equations (3.3) and (3.4) contains the INS

states augmented with DD GNSS multipath and cycle ambiguity states.
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Given the measurement model in (3.3) and the process model in (3.4), the

Kalman filter time update is

xKF
k = �x x̂

KF
k�1 + �x ũk�1 (3.5)

where xKF
k and x̂KF

k�1 are the a priori estimate of x at time epoch k and a posteriori

estimate of x at k � 1, respectively. The measurement update at time epoch k gives

the a posteriori estimate x̂k as

x̂KF
k = xKF

k + Lk

�
z⇢�k

� Hkx
KF
k

�
(3.6)

where Lk is the Kalman gain matrix at time epoch k, optimally computed by the

estimator as
Lk = P̂ xkH

T
k V

�1
⇢�k

(3.7)

and P̂ k is the post-measurement state estimate error covariance matrix at time epoch

k, which is obtained as

P̂ xk =
�
P

�1
xk

+ H
T
k V

�1
⇢�k

Hk

��1
(3.8)

and P k is the pre-measurement state estimate error covariance matrix at time k,

computed as
P xk = �x P̂ xk�1

�T
x + Wxk�1

. (3.9)

The innovation vector � of the Kalman filter at time epoch k is

�k = z⇢�k
� Hkx

KF
k (3.10)

where xKF
k is obtained from the time update in (3.5). Using (3.3) and (3.10), the

innovation covariance matrix Sk is computed as

Sk = Hk P xk H
T
k + V ⇢�k

(3.11)

3.1.2 Loosely–Coupled INS/GNSS Estimator. In a loosely-coupled architec-

ture, the position solution is first obtained from a least squares estimator using GNSS

measurements. This GNSS-only position solution is then directly incorporated into a
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Kalman filter to produce the rest of the navigation solution using IMU measurements.

This integration scheme is consistent with local area augmentation systems such as

GBAS because they output a position solution directly. The estimator introduced in

this section is an example for GBAS applications. However, the concepts developed

here are applicable to other loosely-coupled applications as well.

3.1.2.1 GBAS–Assisted Weighted Least Squares Estimator. The di↵eren-

tially corrected carrier-smoothed code measurement in (2.13) can be re-expressed for

the time epoch k as

⇢k =
h
Gk 1

i

| {z }
G⇢k

"
�rk

�⌧uk

#
+ ⌫⇢k . (3.12)

Utilizing the measurement model in (3.12), the weighted least squares estimate �r̂LS
k

of the position is obtained by

�r̂
LS
k = T rG

+
⇢k

⇢k (3.13)

where T r is the matrix that extracts the position rk from the augmented GNSS state

vector [�rk, �⌧uk
]T and G

+
⇢k

is the weighted pseudo-inverse matrix of G⇢k

G
+
⇢k

=
�
G

T
⇢k

V
�1
⇢k

G⇢k

��1
G

T
⇢k

V
�1
⇢k
. (3.14)

Defining �r̂LS
k = �rk + �r̃

LS
k and substituting (3.12) into (3.13), one can obtain the

least squares estimation error �r̃LS
k as

�r̃
LS
k = T rG

+
⇢k

⌫⇢k (3.15)

3.1.2.2 Loosely–Coupled Kalman Filter. Recall that the discrete form of the

INS process model previously obtained in (2.29), is

xk = �xk�1 + � ũk�1 + wk�1. (3.16)

The GBAS solution r̂
LS
k obtained from the weighted least squares estimator in (3.13),

is utilized in a loosely-coupled Kalman filter to calibrate the INS error states. Re-

calling x
0
k =

⇥
�vk, �Ek, bk

⇤T
, the measurement model of the Kalman filter in the
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loosely-coupled architecture has the typical form

�r̂
LS
k =

h
I 0

i "
�rk

x
0
k

#
+ �r̃

LS
k . (3.17)

The main assumption in a Kalman filter is that the measurements are un-

correlated over time. However, �r̂LS
k in (3.17) is time-correlated because the GBAS

measurement noise ⌫⇢ in (3.12) is time-correlated due to the prior Hatch filtering. As-

suming that the time constant of the hatch filter ⌧h is considerably larger than that of

the multipath ⌧m, the time correlation of the measurement noise ⌫⇢ can be captured

with a first-order Gauss Markov process driven with a white noise ✏k ⇠ N (0,Ek) as
2

664

⌫
1
⇢k
...

⌫
n
⇢k

3

775

| {z }
⌫⇢k

=

2

664

e
��t

⌧h 0
. . .

0 e
��t

⌧h

3

775

| {z }
�h

2

664

⌫
1
⇢k�1

...

⌫
n
⇢k�1

3

775

| {z }
⌫⇢k�1

+

2

664

✏
1
k�1
...

✏
n
k�1

3

775

| {z }
✏k�1

(3.18)

where �t is the GNSS receiver sampling time and ⌧h is the Hatch filter time con-

stant. The components of ⌫ ⇢k�1
and ✏k�1 superscripted from 1 to n are the errors

corresponding to the measurements obtained from satellites 1 to n.

The covariance V ⇢k of the measurement error vector ⌫⇢k in (3.18) is a diagonal

matrix obtained from the Hatch filter at steady-state. Incorparating this steady-state

value of V ⇢k in the process model (3.18), the driving noise covariance matrix Ek is

obtained as
Ek = (I ��2

h)V ⇢k . (3.19)

To capture the correlation in the Kalman filter, we first obtain a zero-noise

measurement model by substituting (3.15) into (3.17) and augmenting the colored

noise ⌫⇢k into the state vector as [9]
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then, we also augment the Gauss Markov process model for ⌫⇢ in (3.18) with the INS

process model in (3.16) as
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where wxk ⇠ N (0,Wx) is the white process noise of the Kalman filter having a

covariance matrix of Wx.

Given the augmented process model in (3.21), the Kalman filter time update

gives the a priori estimate xKF
k as

xKF
k = �x x̂

KF
k�1 + �x ũk�1 (3.22)

and the measurement update gives the a posteriori estimate x̂k as

x̂KF
k = xKF

k + Lk

�
�r̂

LS
k � Hkx

KF
k

�
(3.23)

where Lk is the Kalman gain at time epoch k, and optimally computed by the esti-

mator as
Lk = P xkH

T
k (HkP xkH

T
k )

�1
, (3.24)

and P xk is the pre-measurement estimate error covariance of xk obtained from

P xk = �x P̂ xk�1
�T

x + W xk�1
, (3.25)

and P̂ xk is the post-measurement estimate error covariance of xk computed as

P̂ xk = (I � LkHk)P xk . (3.26)

It should be reminded that the equations from (3.24) to (3.26) are slightly di↵erent

from those from (3.7) to (3.9) for the tightly coupled model because the measurement

error covariance is assumed zero (i.e., V �r̂LS
k

= 0) for the loosely-coupled model. The

reason is that the post-Hatch filter residual noise is included in the multipath model.

The Kalman filter innovation vector �k is

�k = �r̂
LS
k � Hkx

KF
k (3.27)



30

where �r̂LS
k and xKF

k are obtained from the weighted least squares estimator in (3.13)

and the Kalman filter time update in (3.22), respectively. Using (3.20) and (3.27),

the innovation covariance matrix Sk is computed as

Sk = Hk P xk H
T
k (3.28)

3.1.3 Innovations–Based INS Monitor. The monitor we describe here has

roots in receiver autonomous integrity monitoring (RAIM) techniques, which were

originally developed to detect satellite faults by exploiting redundancy in satellite

measurements [39]. However, unlike conventional RAIM, the detection concepts used

in this work provide the necessary redundancy through INS measurements.

We implement a spoofing monitor (detector) using the Kalman filter innova-

tions. In coupled INS/GNSS integration, the innovation vector �k defined in (3.10)

and (3.27), represents the pure discrepancy between GNSS and INS at time epoch

k. Under a smart spoofing attack where the fault is slowly injected through GNSS

and contaminates INS state estimation slowly, the current-time innovation will be

ine↵ective for detection; however, the fault should be observable in the innovations if

they are accumulated over time. Therefore, we use a cumulative Kalman filter test

statistic q at time epoch k which is the sum of squares of the normalized innovation

vectors over time:

qk =
kX

i=1

�
T
i S

�1
i �i, (3.29)

or in vector form as
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where S1:k is the block diagonal matrix composed of the innovation covariances

Si’s (0 < i  k). It should be noted that the innovations are independent [13]:
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E[�i�
T
j ] = 0 for i 6= j because the Kalman filters in both the loosely and tightly-

coupled integrations are constructed to ensure both the process and measurement

noises are white and Gaussian.

The proposed INS monitor simply checks whether the test statistic qk is smaller

than a pre-defined threshold T as
qk ? T. (3.31)

The INS monitor alarms for a fault if qk > T . Let n be the number of mea-

surements for each GNSS measurement update; under fault free conditions, the test

statistic qk is chi-square distributed with nk degrees of freedom for the tightly-coupled

implementation and with 3k degrees of freedom for the loosely-coupled implementa-

tion. Even though n may vary from one time epoch to another due to satellites

occasionally rising and setting, for the simplicity in the analysis it is assumed con-

stant. For a given false alarm requirement, the threshold T is determined from the

inverse chi-square cumulative distribution function. Under faulted conditions, qk is

non-centrally chi-square distributed with a non-centrality parameter �2k,

�
2
k = E[�T

1:k]S
�1
1:k E[�1:k] (3.32)

which is used to evaluate the probability of missed detection.

3.2 Batch Residual–Based Monitor

In this section, we propose an analogous spoofing monitor that is compatible

with systems where INS and GNSS are coupled in a batch estimator rather than a

Kalman filter. Spoofing detection is accomplished by monitoring the residual of the

batch estimator. Unlike the sequential process in a Kalman filter, a batch estimator

processes the entire measurement sequence simultaneously in a least squares estima-

tion algorithm. Its current time epoch estimation accuracy is equivalent to a Kalman

filter, however it is computationally expensive and gets slower as the data accumu-

lates. Despite the computational limitations of the batch estimator, in some RAIM
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applications [20] it was shown that its detection performance is better than Kalman

filter-based monitors since it monitors whole time sequence of the faults.

3.2.1 Tightly–Coupled Batch Estimator. The batch weighted least-squares

estimate of a state of interest (e.g., altitude in aircraft approach) is obtained using

all available measurements, which is referred to as full-set solution. A general batch

realization for linear dynamic systems is described in [20]. This section applies the

batch formulation to a tightly-coupled INS/GNSS relative navigation system.

Recalling x
0
k =

⇥
�vk, �Ek, bk

⇤T
and defining ⌫

0
⇢�k

= m⇢�k
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, the DD GNSS

measurement equation in (2.11) and the INS model in (2.29) can be re-expressed as
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and
0 = �xk�1 � I xk + � ũk�1 + wk�1, (3.34)

respectively. So far, we have obtained the measurement and process models in se-

quential form. The next step is to construct a batch form of the tightly-coupled INS

GNSS mechanization by using (3.33) and (3.34). It is first assumed that the INS and

cycle ambiguity states have been initialized under fault-free conditions:
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where x
p
1 and n

p
⇢� are the pseudo-measurements (i.e., initial conditions) for x1 and

n⇢�, respectively; �x1 ⇠ N (0,P 1), �n⇢� ⇠ N (0,P n⇢�
), and �x1,n⇢�

⇠ N (0,P 1,n⇢�
).

P 1 and P n⇢�
are the initial covariance matrices of x and n⇢�, respectively; and P 1,n⇢�

is a diagonal matrix as

P 1,n⇢�
=

"
P 1 0

0 P n⇢�

#
. (3.36)
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Combining (3.33), (3.34), and (3.35) yields a batch form containing all the

time history of process and measurement models with initial conditions as
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where zb is the batch measurement vector, Hb is the batch observation matrix, xb

is the batch state vector, and ⌫b is the batch measurement noise vector, which has a

covariance matrix V b as

V b =

2

666666664
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The first block diagonal term in (3.38) corresponds to the initial state covariance

matrix. The diagonal terms V
0

⇢�i
include receiver thermal noise and multipath, while

the time correlated e↵ect of multipath is captured in the o↵-diagonal terms V
0

⇢�ij

where multipath is modeled as a first order Gauss Markov process. Recall that the

ũi terms in (3.37) are deterministic inputs to the estimator; therefore they do not

impact the batch measurement error covariance V b.

Using the batch model in (3.37), the weighted least squares estimate x̂b and

its error covariance P̂ b are computed as

x̂b = H
+
b zb (3.39)

and
P̂ b =

�
H

T
b V b

�1
Hb

��1
, (3.40)
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respectively, where H
+
b is the weighted pseudo-inverse matrix of Hb

H
+
b =

�
H

T
b V

�1
b Hb

��1
H

T
b V

�1
b . (3.41)

3.2.2 Residual–Based INS Monitor. In residual-based RAIM, the test statistic

is defined as the weighted norm of the residual vector [39]. Under fault free conditions,

the statistical behavior of the test statistic is governed by the measurement noise

characteristics. For a given false alarm requirement, these characteristics are used

to define a threshold for the monitor. The redundancy for detection in the residual-

based INS monitor is provided through INS measurements which are the fault-free

zero rows of the batch measurement vector zb in (3.37).

The residual vector r of the batch estimation in (3.39) is

r = zb � Hb x̂b. (3.42)

The monitor checks whether the weighted norm of the residual, which we call test

statistic q, is larger than a pre-defined threshold T

q = rTV
�1
b r ? T. (3.43)

Let n be the number of GNSS measurements (assumed constant over the batch time

interval for simplicity) and m be the number of states at each time epoch. Under fault

free conditions, the test statistic q is centrally chi-square distributed with k (n � m)

degrees of freedom where k is the number of time epochs. For a given false alarm

requirement, the threshold T is determined from the inverse cumulative chi-square

distribution. The monitor alarms for a fault if q is larger than T . Under faulted

conditions, the test statistic is known to follow a noncentral chi-square distribution

with a non-centrality parameter

�
2 = E[r]T V

�1
b E[r] (3.44)

3.3 Uncoupled Monitor
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In an uncoupled INS/GNSS scheme, GNSS information does not contribute to

decreasing the INS error rate. Although the uncoupled integration is not as common

as other integration types, some of the general aviation and maritime application use

a standalone GNSS uncoupled with INS. The accuracy of the INS solution in stand-

alone mode degrades over time. However depending on its sensor grade (Tables 2.1

and F.1), it can be used as a sanity check for GNSS solution specifically in en route

horizontal guidance applications, the accuracy and integrity requirements of which

are not as strict as the vertical requirements of landing and approach applications.

In this section, we describe a GNSS-only least squares estimator and INS-only dead

reckoning estimator, and define a simple spoofing monitor that checks the discrepancy

between these two solutions.

3.3.1 GNSS–Only Weighted Least Squares Estimator. The standalone

GNSS measurement equation in (2.5) can be re-written as

⇢k =
h
Gk I

i

| {z }
Hk

"
�rk

�⌧uk

#
+ m⇢k + ⌫⇢k| {z }

⌫
0
⇢k

(3.45)

where ⌫
0
⇢k

⇠ N (0,V 0
⇢k
) is the measurement error vector containing both multipath

and other residual errors in ⇢k. Utilizing the measurement model in (3.45), the

weighted least squares estimate of �rk is

�r̂
LS
k = T rH

+
k ⇢k (3.46)

where T r is the matrix that extracts the position �rk from [�rk, �⌧uk
]T , H

+
k is the

pseudo-inverse matrix
H

+
k = P̂ �rkH

T
k V

0�1

⇢k
(3.47)

and P̂ k is the state estimate error covariance matrix

P̂ �rk =
�
H

T
k V

0�1

⇢k
Hk

��1
. (3.48)

3.3.2 INS Propagation. Recalling the INS model defined in (2.29) as

xk = �xk�1 + � ũk�1 + wk�1, (3.49)
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the INS-only state estimate x
INS and its error covariance matrix P can be propagated

over time as
x

INS
k = �x

INS
k�1 + � ũk�1 (3.50)

and
P xk

= �P xk�1
�T + W k�1, (3.51)

respectively, where the initial conditions are x
INS
0 = x0 and P x0 = P x0 .

3.3.3 Uncoupled INS Monitor. Unlike the coupled integration cases which

monitor the cumulative residual (or innovation), the uncoupled monitor can directly

check the discrepancy between INS and GNSS solutions. The reason is that the INS

in uncoupled integration is not calibrated by GNSS, and is therefore not corrupted

over time by faulty GNSS measurements.

The monitor checks whether the test statistic qk defined as the discrepancy

between the estimates of the state of interest (i.e., lateral position) obtained from the

GNSS least squares estimation and the INS propagation, is larger than a predefined

threshold T as
qk =

��t"r �r̂LS
k � t"xx

INS
k

�� ? T (3.52)

where t"r and t"x are the row vectors that extract the lateral position from �r̂
LS
k and

x
INS
k , respectively. Under fault free conditions, the test statistic qk ⇠ N (0, �2

qk
) where

�
2
qk

is the variance of the test statistic

�
2
qk

= t"r T r P̂ �rk T
T
r t

T
"r + t"xP xk

t
T
"x. (3.53)

For a given false alarm requirement, the threshold T is determined from the inverse

Gaussian distribution. The INS monitor alarms for a fault if qk > T . Under faulted

conditions, qk is normally distributed with a non-zero mean, which is used to evaluate

the performance of the monitor by computing the probability of missed detection.

3.4 Monitor Performance Evaluation with Integrity Risk
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In this work, integrity risk is used as a metric to quantify the performance

of the spoofing monitors. Integrity risk is defined as the probability that the most

critical state estimate error exceeds a predefined alert limit without being detected. In

presence of a spoofing fault f in the GNSS code and carrier measurements (conditional

event Hf ), the integrity risk at time epoch k is expressed in terms of the test statistic

qk and the current estimate error of hazardous state "k as

Irk = Pr ( |"k| > l, qk < T | Hf ) Pr (Hf ) (3.54)

where Pr (Hf ) is the probability of fault occurrence, l is the alert limit, and T is a

pre-defined threshold for detection which represents those in (3.31), (3.43), and (3.52)

for the Kalman filter-based, batch-based, and uncoupled monitors, respectively. An

upper boundIrk on the integrity risk Irk in (3.54) is established by using the worst case

fault fw in computing "k and qk, and conservatively assuming that the probability of

the worst case fault occurrence Pr (Hfw) is 1:

Irk = Pr ( |"k| > l, qk < T | Hfw) � Irk . (3.55)

In the monitor’s performance evaluation, " is selected based on the most stringent

requirements defined for a specific application. For example, the error in altitude

is the most hazardous in aircraft approach and landing applications (e.g., relative

navigation and GBAS) whereas the horizontal position error is more critical in en

route navigation in aviation and maritime applications. In the performance analysis,

which will be introduced in the following chapters, the estimation error "k associated

with the hazardous state can be obtained by di↵erencing the state estimate (to be used

as a navigation solution) x̂ and the actual state x, and extracting the corresponding

row using the row transformation vector t" as

"k = t"

�
x̂k � xk

�
(3.56)

where "k is normally distributed.
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In this chapter, we proposed spoofing monitors for di↵erent INS/GNSS inte-

gration schemes. In the following chapters, their statistical reliability performance

will be evaluated and demonstrated for several example high-integrity GNSS aviation

applications under worst-case spoofing attacks.
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CHAPTER 4

AIRCRAFT DYNAMICS EFFECTS ON MONITOR PERFORMANCE AGAINST
OPEN LOOP SPOOFERS

In this chapter, we show that for an aircraft equipped with an INS, the dy-

namic response to disturbances (e.g., wind gusts or control actions actuated by au-

topilot) provides an advantage in detecting spoofing attacks. The reason is that the

disturbance response will be instantaneously reflected in INS measurements, but not

necessarily in the spoofed GNSS signal. The main contribution is the development

of a rigorous methodology to compute upper bounds on the integrity risk resulting

from a worst case spoofing attack – without needing to simulate individual aircraft

approaches with an unmanageably large number of gust disturbance profiles. We use

a B747 (Boeing 747) aircraft model to demonstrate the INS monitor’s performance

and to investigate disturbance levels (i.e., gust intensity) that are su�cient to meet

integrity risk requirements for precision approach and landing.

The methods introduced in this chapter quantify the monitor’s sensitivity to

the spoofer’s lack of knowledge on the aircraft trajectory in an “open-loop” spoofing

scenario. The analysis results obtained in this chapter will support further analysis

with more sophisticated closed-loop tracking and spoofing scenarios in the following

chapters.

4.1 Background and Previous Work

In [25], it was illustrated how a spoofer can inject faults slowly into the GNSS

measurements such that they corrupt the tightly coupled solution while going un-

noticed by the INS detector. It was also shown that if the spoofer knows the exact

trajectory of an aircraft, he or she might eventually cause errors large enough to
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Figure 4.1. Open-loop performance evaluation model capturing the impact of wind
gust disturbance on aircraft that uses a tightly-coupled INS/GNSS scheme. The
wind gust intensity ⌘g (white noise) and spoofer’s fault vector f are the inputs to
the model, which impact the output of the batch estimator, x̂b.

exceed hazard safety limits, again without triggering an alarm from the INS detec-

tor. As a case study in [25], in the presence of simple sinusoidal deviations from a

nominal straight line final approach trajectory, which are assumed to be unknown

to the spoofer, it was concluded that the monitor was e↵ective, for the cases tested

at least, in detecting spoofing attacks with quantifiably low integrity risk. However,

to make a decisive conclusion, the aircraft trajectory must be tested with general-

ized disturbance patterns. In reality, these disturbance patterns might be induced

by several factors, such as transient characteristic of the altitude-hold autopilot, the

aircraft’s controller response to the spoofed GNSS signals, or wind gusts. They usu-

ally trigger the short-period dynamics of the aircraft and result in a low-magnitude,

high-frequency disturbance patterns.

4.2 Overview of Methodology

In this work, we extend the spoofing integrity analysis in [25] by deriving the
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statistical dynamic response of an aircraft to a well-established wind gust power spec-

trum (the Dryden Gust Turbulence model) [16]. This derivation provides a statistical

quantification of the trajectory deviations for a stochastic gust environment. Fig-

ure 4.1 is an overview of the performance evaluation model that generates open-loop

dynamic response of an aircraft due to gust disturbances and feeds it into a relative

navigation system using a tightly-coupled INS/GNSS batch estimator. The statisti-

cal information on the trajectory deviations obtained from the evaluation model is

incorporated to a residual-based detector for performance evaluation. In this way, the

impact of the random disturbance on the aircraft nominal trajectory can be directly

incorporated into the integrity analysis seamlessly. The performance of the INS mon-

itor is evaluated for an example aircraft landing approach in a nominal stochastic

wind gust environment to investigate whether the monitor meets the integrity risk

requirement for aircraft precision approach.

4.3 Batch Measurement Model with Fault

For given GNSS fault vectors f i for 1  i  k, the batch estimator model

(3.37) containing DD GNSS measurement and INS models, can be re-written as

z
s
b = Hb xb + ⌫b + f b (4.1)

where xb, Hb, and ⌫b ⇠ N (0,V b) are the batch state vector, observation matrix,

and measurement noise vector, respectively, z
s
b = [zs

⇢�0
, z

s
⇢�1

,0, zs
⇢�2

,0, . . . , zs
⇢�k

]T is

the spoofed batch measurement vector, and f b = [0,f 1,0,f 2,0, . . . ,fk]
T is the fault

history vector in the batch form. Recall that the zero rows in z
s
b and f b are the

fault-free pseudo-measurements corresponding to the INS kinematics.

4.3.1 Worst–Case Fault for Batch Estimator–Based Monitors. A wide

variety of possible spoofing scenarios may exist but it is not necessary to define a

threat space because the worst-case sequence of spoofed GNSS measurements can be

determined analytically by finding the profile that maximizes the integrity risk [20].
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This profile takes into account the impact of spoofed signals on the test statistic and

the user position estimate error simultaneously.

The batch state estimate is

x̂b = H
+
b zb, (4.2)

Substituting (4.1) into (4.2), the state estimation error x̃b = x̂b�xb can be expressed

as
x̃b = H

+
b

�
⌫b + f b

�
. (4.3)

Since the error in the altitude estimate is the most critical in landing approach, it

is convenient to evaluate the performance with respect to vertical direction only.

However, the same evaluation procedure can be applied to any other element of xb.

Using the row transformation vector t", previously defined in (3.56), the vertical error

at time epoch k is extracted from x̃b as

"k = t"H
+
b

�
⌫b + f b

�
. (4.4)

In this work, since all GNSS measurements may be impacted by the spoofing

attack, it is assumed that all GNSS measurements are faulty and that INS is the

source of redundancy used for fault detection. If a spoofing attack is not detected

instantaneously, it may impact INS error state estimates through the tight coupling

mechanism, which then impacts subsequent detection capability. Therefore, a smart

spoofer may select a fault profile that has smaller faults at the beginning, but increases

over time. Qualitatively, the worst case fault profile is one that is injected slowly into

the GNSS measurements, thereby corrupting INS calibration without being detected.

A method to obtain the worst case fault profile for least squares RAIM has

been derived in [3] and was extended to batch estimation in [20]. The residual of the

batch estimation is
r = z

s
b � Hb x̂b. (4.5)
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Under faulted conditions, substituting (4.2) into (4.5) gives the residual as a function

of the fault as
r =

�
I � Hb H

+
b

��
⌫b + f b

�
. (4.6)

The test statistic qk = rTV
�1
b r is non-centrally chi-square (�2) distributed

with k(n � m) degrees of freedom and a non-centrality parameter �2 = E[qk], which

using (4.6), (3.40), and (3.41), can be simplified to

�
2 = f

T
b V

�1
b

�
I � HbH

+
b

�
f b. (4.7)

Integrity risk is a metric to evaluate the performance of the monitor and is defined

as the probability that the position error "k exceeds an alert limit l without being

detected (i.e. qk < T ). It is shown in [20] that " and q are statistically independent.

Therefore, the integrity risk Irk previously defined in (3.55), can be written as a

multiplication of two probabilities as

Irk = Pr (|"k| > l) Pr (qk < T ) . (4.8)

Using (4.4) and (4.7), the worst case fault vector that maximizes the integrity risk

was derived in [20] as

fwb
= ↵T

T
z

h
T z

�
I � HbH

+
b

�
T

T
z

i�1

T zH
+T

b t" (4.9)

where fwb
= [0,fw1

,0,fw2
,0, . . . ,fwk

]T , T z is a kn⇥k(n+m) sparse matrix of zeroes

and ones that extracts the nonzero elements of f b (or z
s
b), and ↵ is a scalar that is

determined through iteration to maximize Ir. The fault vector in (4.9) represents the

most dangerous fault profile that a spoofer can inject into the GNSS measurements

in an open loop tracking and spoofing scenario.

4.3.2 Open–Loop Spoofed Measurements. In Figure 4.2, the blue line rep-

resents the deceptive trajectory corresponding to the spoofed GNSS measurements

broadcast by the spoofer. The black dotted line is the nominal planned trajectory

(for example, the landing approach) and the black curve illustrates the actual flight
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path deviating from the nominal trajectory due to wind gusts. For the covariance

analysis we perform in this chapter, we assume that the aircraft autopilot does not

respond to the spoofed signals, thus the aircraft actual path follows the black curve

in the close neighborhood of the nominal trajectory. However, it will be considered

in the following chapters.

Including the fault vector fk as an additional term into (3.33), the spoofed

DD GNSS measurement z
s
⇢�k

at time epoch k can be written as

z
s
⇢�k

= G⇢�k
�rk + Dn⇢� + ⌫

0

⇢�k
+ fk. (4.10)

Knowing the nominal path of the aircraft, a smart spoofer may inject the worst-case

fault in (4.9). Therefore, the spoofed measurement z
s
⇢�k

received by the aircraft at

time epoch k can be defined as a function of worst-case fault as

z
s
⇢�k

= fwk
+ ⌫

0

⇢�k
. (4.11)

In the presence of wind gusts � and assuming the spoofer cannot predict

the actual trajectory of the aircraft � the actual resultant fault f will be di↵erent

from the worst-case fault fw. It should be mentioned that G⇢�k
�rk term disappears

in (4.11) unlike in (4.10), because when computing and generating the worst case

fault the spoofer assumes a nominal flight � zero deviation from nominal trajectory

�rk = 0. Similarly, the spoofer may arbitrarily assume zero cycle ambiguities in

computing the spoofed measurements. Substituting (4.11) into the left hand side of

(4.10) with n⇢� = 0 gives the relation between resultant fault fk and worst-case fault

fwk
injected by the spoofer as

fk = fwk
� G⇢�k

�rk. (4.12)

Recall that �r is defined as the deviation in position from the nominal (due to wind

gusts) which will be derived and computed using the spectral model in Section 4.4.

The worst-case fault vector fw can be deterministically obtained for a given nominal
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�r

�rf
�rfw

Actual Trajectory

(True GNSS)

Nominal

Trajectory

Faulted GNSS Trajectory

(injected by spoofer)

Figure 4.2. Actual and deceptive trajectories in the existence of wind gust and spoof-
ing attack. �r is the position deviation from nominal trajectory due to wind gust.
�rfw and �rf are the worst case fault and resultant fault in position domain, re-
spectively (i.e., fw = G⇢� �rfw and f = G⇢� �rf ).

trajectory using (4.9). The di↵erence between the worst-case fault that the spoofer

intends, and the resultant fault shown in (4.12) will cause a discrepancy that helps

the monitor detect the fault, as we will demonstrate in Section 4.6.

4.4 Wind Gust Augmented Aircraft Dynamic Model

The atmosphere is composed of many individual patches of continuous tur-

bulence, each of which may be described by a power spectral density. To model at-

mospheric turbulence, a random velocity disturbance is generated by filtering white

noise, the variance of which is the root-mean-square (rms) gust velocity intensity [16].

Utilizing this stochastic model for longitudinal gust dynamics provides a generalized

statistical approach to evaluate the gust impact on aircraft dynamics.

4.4.1 Wind Gust Dynamic Model. Figure 4.3 shows a block diagram for

generating the vertical spatial components of gust velocity and the aircraft’s response

to them. Driving the second-order linear and first-order angular filters Gwg and Gqg

with white noise ⌘g yields linear vertical gust velocity wg and angular pitch rate

qg which can be used as wind disturbance inputs to an aircraft dynamic model F d.
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A/C Dynamic
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Figure 4.3. Interaction between the Dryden vertical wind gust turbulence model and
the linearized aircraft dynamic model. The input ⌘g is white noise representing the
wind gust intensity and the output �r is the position deviation due to wind gust
disturbance on aircraft.

Among the variety of existing gust filter models, the Dryden and Von Karman models

are generally used for continuous gusts in flight dynamics applications [33]. In this

work, we chose the Dryden Model to represent longitudinal (vertical) gust dynamics;

it is expressed in state-space form as

ẋg = Fgxg + G⌘⌘g (4.13)

where ⌘g ⇠ N (0, �2
g), and xg = [xw1 , xw2 , xq]T represents longitudinal gust states

where xw1 and xw2 are for linear gust model, and xq is for angular gust model (details

are in Appendix B). Let wg be the wind gust disturbance to aircraft longitudinal

motion containing the perturbations in vertical linear velocity wg and pitch rate qg.

wg = [wg, qg]T can be extracted as a function of gust state xg as

wg = Cgxg (4.14)

where Cg is a constant output coe�cient matrix given in Appendix B.

4.4.2 Aircraft Disturbance Response Model. Flight through turbulent air eas-

ily excites the short period oscillations for the aircraft. For an airplane in level flight

the main source of excitation is the turbulence disturbance [46]. These disturbances

are not accounted for by the spoofer, but are sensed by the IMU, which provides the

means to detect spoofing attacks. The output of the wind gust model wg can then
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be treated as a disturbance to the open-loop (i.e., �c = 0 in (A.15)) vertical aircraft

dynamics which can be described as [65]

ẋd = F d xd + Ggwg (4.15)

where xd = [�u, �w, �q, �✓, �h]T including vertical plane velocity components (�u, �w),

and pitch rate �q, pitch angle �✓, and altitude �h; Gg is the wind gust disturbance

coe�cient matrix, the columns of which are the same as the second and third columns

of aircraft plant matrix F d, which are defined in detail in Appendix A.

Since the gust noise vector wg in (4.15) is driven by the gust dynamic model

defined in (4.13) and (4.14), the gust-augmented aircraft dynamic model can be writ-

ten in state-space form as
"
ẋd

ẋg

#
=

"
Fd GgCg

0 F g

#

| {z }
Fdg

"
xd

xg

#

| {z }
xdg

+

"
0

G⌘

#

| {z }
G

0

⌘

⌘g (4.16)

where G
0

⌘ is the noise coe�cient matrix of the augmented dynamic model, F dg is the

augmented plant matrix, and xdg is the augmented dynamic state vector capturing

the additional gust states. The main goal here is to obtain the covariance of position

deviation �r = [�rN , �rE, �h]T due to wind gust disturbances, which will then be

used to compute covariance of the resultant fault in (4.12). It is assumed that there

is no deviations on the horizontal (north and east) position components, that is

�rN = �rE = 0, which conservatively simplifies the analysis. To obtain the vertical

position deviation �h, we first compute the covariance of the augmented aircraft states

xdg and extract the covariance on �h.

Assuming steady-state wind gust conditions and knowing that the Dryden gust

model Fg and aircraft model Fd are stable, we can obtain the steady-state covariance

of xdg by numerically solving the Lyapunov equation

0 = FdgP
s
dg + P

s
dg F

T
dg + G

0

⌘G
0T

⌘ �
2
g (4.17)
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where P
s
dg is the steady-state error covariance of xdg. The superscript s stands for

steady-state value.

The output �r of the linearized aircraft model in Figure 4.3, which will feed the

GNSS measurement model in the monitor performance evaluation, contains the ver-

tical deviations in aircraft position due to wind gusts. This represents the di↵erence

between the actual position and the nominal position that the spoofer assumes.

The discrete form of (4.16) is

xdgk+1
= �dg xdgk + �⌘⌘gk (4.18)

where �dg is the state transition matrix of the process model F dg and �⌘ is the

discrete form of G
0

⌘. The batch form containing all the time history of the augmented

dynamic state xdg in (4.18) can be written as

2

666664

0

0

0
...

3

777775
=

2

666664

�I 0 0

�dg �I 0

0 �dg �I

. . . . . .

3

777775

| {z }
Hdgb

2

666664

xdg0

xdg1

xdg2
...

3

777775

| {z }
xdgb

+

2

666664

�xdg0

�⌘⌘g1

�⌘⌘g2
...

3

777775

| {z }
⌫dgb

(4.19)

where Hdg is the observation matrix of the batch model, xdgb is the batch state vector,

�xdg0 ⇠ N (0,P s
dg) is the initial state vector error, and ⌫dgb ⇠ N (0,V dgb) is the total

batch measurement error vector where

V dgb =

2

666664

P
s
dg 0

�⌘�
T
⌘ �

2
g

�⌘�
T
⌘ �

2
g

0
. . .

3

777775
. (4.20)

Using (4.19) and (4.20), batch state estimate error covariance P dgb is obtained as

P dgb = (HT
dgb

V
�1
dgb

Hdgb)
�1
. (4.21)

In order to obtain the time history of the covariance of position deviation from nominal

due to wind gusts, we first define a transformation matrix T rb that extracts �h rows
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from the batch state vector xdgb and inserts zeros corresponding to the north �rN and

east �rE position rows in �rb as

�rb = T rb xdgb (4.22)

where �rb = [0, 0, �h1, 0, 0, �h2, . . .]T contains the time history of the position devia-

tions; then, using (4.21) and (4.22), its covariance matrix Rb is computed as

Rb = T rb PdgbT
T
rb

(4.23)

where �rb ⇠ N (0,Rb).

Note that we will utilize the gust and aircraft dynamic models only to evaluate

the detection performance of the monitor in the presence of GNSS spoofed signals. In

practice, the aircraft dynamic model is not utilized in the actual aircraft’s navigation

system or the monitor.

4.5 RAIM Formulation for Fault Detection Performance

Recall that using the residual based detector, it is possible to analytically

determine the worst-case sequence of spoofed GNSS measurements that maximizes

integrity risk. It should be mentioned that the worst-case fault is computed using

the nominal trajectory since it is assumed that the spoofer only has knowledge of the

nominal trajectory.

Using (4.12), the batch form of the resultant fault vector f can be reformulated

in terms of �r and worst-case fault fw as

f b =

2

66666664

0

fw1

0

fw2

...

3

77777775

| {z }
fwb

�

2

66666664

0

G⇢�1 0

0

G⇢�2

0
. . .

3

77777775

| {z }
Gb

2

66666664

�r1

�r2

...

3

77777775

| {z }
�rb

(4.24)
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where fwb
is the worst-case fault profile computed using (4.9) and �rb ⇠ N (0,Rb)

is the time history of position deviations due to wind gust derived in (4.22) with Rb

obtained from (4.23).

When quantifying the performance of the monitor, we need to use the resultant

fault vector f b in the residual equation. Therefore, substituting (4.24) into (4.6)

results in
r =

�
I � HbH

+
b

��
⌫b + fwb

� Gb �rb

�
(4.25)

The new formulation of the residual in (4.25) captures the wind gust e↵ect in the

last term. Therefore, we can quantify the e↵ect of the wind gust on the detection

capability of the monitor in terms of integrity risk. Similarly, the state estimate error

in (4.4) is modified to

"k = t"H
+
b

�
⌫b + fwb

� Gb �rb

�
(4.26)

In most RAIM implementations, the test statistics and estimate errors are

independent, and therefore the probability on the right hand side of (4.8) is written

as a product of the two probabilities. However, due to the influence of wind gusts,

which are unknown to the spoofer generating the GNSS measurements, the estimate

error "k in (4.26) and test statistic qk obtained from weighted norm of the residual in

(4.25) are correlated. Computing the integrity risk with correlated " and q is di�cult

because q is �2 distributed whereas " is normally distibuted. Alternatively, it is known

(see, for example [40]) that the weighted norm of the residual (test statistic) is equal

to the norm of the parity vector. Therefore, we can define an equivalent approach

to evaluating the integrity risk by first obtaining a parity vector p using the residual

vector of the whitened model. The whitened model can be obtained as

V
�1/2
b zb| {z }
zb

= V
�1/2
b Hb| {z }
Hb

xb + V
�1/2
b ⌫b| {z }
⌫b

+V
�1/2
b fwb| {z }
fwb

� V
�1/2
b Gb| {z }
Gb

�rb
(4.27)

which results in ⌫b ⇠ N
�
0, I

�
. Note that the bar notation represents the whitened
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model. The residual vector of the whitened system becomes

r =
�
I � Hb Sb

��
⌫b + fwb

� Gb �rb

�
(4.28)

The parity vector p is defined as
p = Lr (4.29)

where L is the unitary left null-space matrix of Hb such that LHb = 0. It can be

obtained using singular value decomposition of Hb as

Hb = [U 1 U 2]

"
S

0

#
V

T (4.30)

L = U
T
2 (4.31)

The parity vector p in (4.29) can be expanded as

p = L
�
⌫b + fwb

� Gb �rb

�
(4.32)

where p is composed of k(n � m) independent Gaussian distributions, and kn and

km are the number of measurements and states in the batch, respectively.

By combining the parity vector in (4.32) with the state estimate error in (4.26),

we obtain a multi-dimensional Gaussian distribution as

[p, "k]
T ⇠ N

�
µk,⌃k

�
(4.33)

where the mean vector µ is

µk =

"
L

t"H
+
b

#
fwb

(4.34)

and the covariance matrix ⌃ is

⌃k =

2

4I + LGbRbG
T
b L

T
H

+T

b t
T
" GbRbG

T
b L

T

LGbRbG
T
b t"H

+
b H

+T

b t
T
"

�
GbRbG

T
b + I

�
t"H

+
b

3

5 (4.35)

An upper bound on the spoofing integrity risk for a given gust power spectral in

(4.36), can be obtained numerically using the multi-dimensional Gaussian distribution

derived in (4.33):
Irk < Pr ( |"k| > l, |p| < T ) (4.36)
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Figure 4.4. The impact of wind gust intensity on integrity risk after 1 minute of level
flight of a B747 under a worst-case GNSS spoofing attack.

where |p| is a vector representing element-wise absolute values of p, T is a k(n�m)⇥1

vector each element of which equals to the square root of the threshold T for the actual

detector defined in (3.43), and l is defined as the vertical alert limit. Recall that n

and m are the number of measurements and states at each time epoch, respectively.

4.6 Performance Evaluation Results

In this section, a covariance analysis is implemented to quantify the impact

of wind gust on the integrity risk during precision landing approach for the worst-

case GNSS spoofing attack. However, we assume that the spoofer broadcast has a

limited range, and therefore that the spoofing attack is of limited duration. A B747

commercial aircraft model is selected to test the performance of the proposed INS

monitor against worst case spoofing attack under various vertical wind gust condi-

tions. The aircraft model parameters are given in Table F.5. The aircraft is assumed

to descend in trimmed (level) flight conditions and only the vertical components of

the aircraft and gust dynamics are modeled. The nominal flight conditions and cor-

responding longitudinal aerodynamic coe�cients and their derivatives for trimmed
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flight conditions are given in Tables F.4 and F.6. The IMU sensor and GNSS receiver

specifications can be found in Tables F.1 and F.2, respectively.

The initial covariance P 1 for the INS states in (3.36) is obtained from a Kalman

Filter running during presumed fault free period. At the moment of spoofing, we

assume all the GNSS carrier phase cycle ambiguities su↵er from cycle slips; therefore

we assume no prior knowledge on the cycle ambiguity states, so that P n⇢�
= 1

in (3.36), which is conservative. The reason is that the initial cycle slips increase

the uncertainity in the airborne estimator, which allows the spoofer to inject more

aggressive faults without being detected.

In Figure 4.4, the results illustrate that the integrity risk diminishes consid-

erably as the wind gust intensity (power spectral density) increases for a worst-case

spoofing attack lasting up to 1 minute. The results show that even under light tur-

bulence conditions (�g < 2.5 m/s) [33], integrity risk on the order of 10�7 can be

achieved. This is a promising result since, although we conservatively select one of

the biggest aircraft to lessen the airframe’s dynamic sensitivity to wind gusts, the

minimum wind gust intensity required for detecting a worst-case spoofing scenario is

nevertheless relatively low.

To investigate the impact of spoofing time on integrity risk, we ran simulations

with wind gust intensity ranging from 0 to 3 m/s and spoofing attack durations of 30

sec to 3 min. The left plot in Figure 4.5 shows the case with no wind gusts and a worst

case spoofing attack. The spoofing integrity risk sharply increases to approximately

1 as time increases from 30 sec to 1 min. We conclude that under no-gust conditions,

increasing the spoofing time allows the spoofer to inject faults to the system more

slowly, which reduces the monitor’s ability to detect spoofing attacks by corrupting

the estimation of INS states. On the other hand, with very light wind gust intensities

(�g < 1 m/s), it is observed in the right plot of Figure 4.5 that although the spoofer
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Figure 4.5. The impact of GNSS spoofing attack duration on integrity risk for a B747
landing approach in the no-gust case (left) and several wind gust intensities �g
ranging from 1 to 3 m/s (right).

Table 4.1. Steady-state Standard Deviations in Vertical Dynamics of a B747 Aircraft
Exposed to a 5 m/s Wind Gust Intensity

Standard Deviation Symbol Value Unit

Heading Speed �u 1.42 m/s

Vertical Speed �w 0.24 m/s

Pitch Angle Rate �q 0.13 deg/s

Pitch Angle �✓ 0.37 deg

succeeds in deceiving the aircraft’s navigation system over time, the integrity risk

is still lower than the gust-free case. Furthermore, Figure 4.5 illustrates that with

su�cient wind gust intensity (�g > 2 m/s), increasing spoofing time allows for much

better detection of GNSS spoofing attacks since the discrepancy between the actual

position due to wind gusts and the nominal position assumed by the spoofer grows

quickly over time. As a result, the integrity risk decreases over time, unlike gust-free

case.

To illustrate that the wind gust intensity values used to generate Figure 4.5

are realistic, we simulate a 3 minute flight of a B747 exposed to a 5 m/s wind gust
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Figure 4.6. The change in altitude standard deviation in the presence of wind gusts
having 5 m/s power spectral density for a 3 minute B747 landing approach.

intensity, which is higher than any of the values used in Figure 4.5. The steady-state

standard deviations in the vertical dynamics of the aircraft are given in Table 4.1.

For example, the steady-state standard deviation in the vertical speed of the aircraft

is about 0.24 m/s for the 5 m/s wind gust intensity. Using these steady-state values,

the growth in altitude error is shown in Figure 4.6. The standard deviation in vertical

position reaches approximately 6 m in 3 min. These values seem realistic given the size

of the aircraft and landing approach. Therefore, it can be concluded that, although

the wind gust intensities we utilized are not aggressive, the INS monitor is capable of

detecting worst-case spoofing attacks.
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CHAPTER 5

MONITOR PERFORMANCE AGAINST CLOSED–LOOP
TRACKING AND SPOOFING

In this chapter, we evaluate the performance of the Kalman filter innovations-

based monitor in a tightly-coupled INS/GNSS mechanization. For performance anal-

ysis purposes, we use aircraft shipboard landing as an example application, but the

methods introduced here are also applicable to other GNSS relative navigation sys-

tems that are tightly-coupled with inertial sensors.

One assumption made in Chapter 4 is that the spoofer does not have real-time

knowledge of the actual aircraft position during spoofing attack. In this chapter, we

consider spoofers capable of tracking and estimating the real-time position of the tar-

get aircraft – for example, by means of remote tracking from the ground. The monitor

performance is evaluated against worst-case spoofing attacks by first constructing a

mathematical framework to quantify the post-monitor spoofing integrity risk, then

deriving an analytical expression of the worst-case sequence of spoofed GNSS signals.

We also allow for a maximum level of awareness on the part of the spoofer by intro-

ducing a stochastic methodology for the spoofer to account for his/her own tracking

sensor errors in his/her worst-case fault derivation. We finally apply these to an ex-

ample spoofing attack on an aircraft on final approach. The results show that GNSS

spoofing is easily detected, with high integrity, unless the spoofer’s position-tracking

devices have unrealistic, near-perfect accuracy and no-delays.

5.1 Evaluation Model for Spoofing Monitor Performance

In this section, we build a comprehensive performance evaluation model that

captures the aircraft controller dynamic response (actuated by either the pilot or
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Figure 5.1. INS monitor performance evaluation model capturing the closed-loop re-
lation between the INS estimator (observer) and the altitude hold autopilot (con-
troller) in presence of a GNSS spoofing attack with aircraft position tracking. The
spoofer’s deliberate fault f is the input of the model, which impacts the output of
the Kalman estimator.

autopilot) to a worst-case spoofing attack, augmented with a Kalman filter-based

estimator and innovations-based INS detector dynamics. In this model, the spoofed

measurements are input to the estimator and detector. The impact of the real-time

position tracking and spoofing on the aircraft’s compensation system and motion is

described in the closed loop block diagram in Fig. 5.1.

5.1.1 Closed Loop Spoofed Measurements. The DD GNSS ranging measure-

ment vector z⇢�k
was previously defined in (3.3). Under a spoofing attack, the DD

GNSS measurement that the aircraft receives will be the spoofer’s broadcast z
s
⇢�k

which is expressed as
z
s
⇢�k

= Hk x̂
s
k + ⌫⇢�k

+ fk (5.1)

where x̂s
k is the spoofer’s estimate for the actual aircraft state xk and fk is a fault

vector added by the spoofer.

The spoofer’s estimate of the aircraft state vector x̂s
k can be expressed in terms
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of the actual state xk as
x̂s
k = xk + x̃s

k (5.2)

where x̃s
k is the estimate error influenced by the tracking sensor noise.

Substituting (5.2) into (5.1), the spoofed measurement becomes

z
s
⇢�k

= Hkxk + ⌫⇢�k
+ Hk x̃

s
k + fk| {z }
f

0

k

(5.3)

where f
0

k is the resultant fault vector containing the position tracking error.

It is assumed that the spoofer is capable of measuring the aircraft position

using an optical sensor, for example a laser ranging system. The resulting estimation

error x̃s
k in (5.3) is modeled as white Gaussian noise, which is a conservative assump-

tion. The reason is that, any filtering or smoothing by the spoofer will cause a phase

delay between the aircraft’s actual dynamic response to the spoofing attack (actu-

ated by autopilot) and the spoofer’s estimate of it. This, in turn, will be reflected as

an inconsistency between INS and GNSS measurements and improve the detection

capability of the monitor [58].

Under a spoofing attack, the nominal measurement z⇢�k
in the estimator’s

measurement update equation (3.6) is replaced with the spoofed measurement z
s
⇢�k

in (5.3):
x̂KF
k = xKF

k + Lk

�
z
s
⇢�k

� Hkx
KF
k

�
. (5.4)

Substituting (5.3) into (5.4) gives

x̂KF
k =

�
I � LkHk

�
| {z }

L
0

k

xKF
k + LkHkxk + Lk

�
⌫⇢�k

+ f
0

k

�
.

(5.5)

Substituting the time update equation (3.5) into (5.5), we then have

x̂KF
k = L

0

k�x x̂
KF
k�1 + LkHkxk + L

0

k�x ũk�1 + Lk

�
⌫⇢�k

+ f
0

k

�
. (5.6)
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Let us define the state estimate error as x̃KF
k = x̂KF

k � xk. Subtracting the INS

kinematic equation (3.2) from (5.6) gives the state estimate error dynamics as

x̃KF
k = L

0

k�x x̃
KF
k�1 � L

0

kwk�1 + Lk

�
⌫⇢�k

+ f
0

k

�
. (5.7)

Similarly, the innovation vector under a spoofing attack is obtained by replacing the

nominal measurement z⇢�k
in (3.10) with the spoofed measurement z

s
⇢�k

in (5.3) as

�k = z
s
⇢�k

� Hkx
KF
k . (5.8)

Using (3.2) and (3.5), the current innovation vector �k in (5.8) can be expressed in

terms of the previous state estimate error x̃KF
k�1 as

�k = f
0

k + ⌫⇢�k
� Hk

�
�x x̃

KF
k�1 � wk�1

�
. (5.9)

Augmenting the INS kinematic model in (3.2) with the state estimate error model

in (5.7) and the innovation model in (5.9) results in a performance evaluation model

capturing the impact of the error in spoofer’s tracking sensors and the fault on the

actual state, the state estimate error, and the innovation:
2

664

xk

x̃KF
k

�k

3

775=

2

664

�x 0 0

0 L
0

k�x 0

0 �Hk�x 0

3

775

2

664

xk�1

x̃KF
k�1

�k�1

3

775+

2

664

�x

0

0

3

775 ũk�1 +

2

664

I 0

�L
0

k Lk

Hk I

3

775

"
wk�1

⌫⇢�k

#
+

2

664

0

Lk

I

3

775f
0

k.

(5.10)

5.1.2 Augmented Observer and Controller. To include pilot/autopilot action,

whose goal is to follow the prescribed final approach glidepath, we incorporate an

altitude autopilot into the aircraft compensator model. Assuming that there is a

spoofing attack during the landing approach, this altitude controller will respond

to the spoofing attack by inducing control actions; the aircraft’s response will be

measured by the IMU. To quantify the impact of the motion induced by these control

actions on the IMU measurements ũ in (5.10), we utilize a closed loop compensation

model (Fig. 5.1) including an observer feedback based on the output of the Kalman
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Nominal Trajectory

Steady-state
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Figure 5.2. Impact of the position fault and the consequent autopilot response to the
spoofing attack on the aircraft trajectory. The dotted line is the nominal or planned
approach trajectory, the blue line represents the faulty positions injected by the
spoofer, the red line is the steady-state trajectory that the aircraft will maneuver
toward in response to the spoofed signal, and the black curve is the actual flight
path due to autopilots response to the spoofing attack. Note that the blue and red
trajectories are symmetric about the nominal approach line.

filter estimator. Due to the presence of the spoofing fault in the estimator’s output x̂,

the altitude-hold autopilot generates a control input �c (elevator and thrust) resulting

in a correction maneuver (the black curve in Fig. 5.2).

To capture the aircraft’s response in this closed loop system, we use the aircraft

dynamic model in (A.15)
ẋd = F dxd + G� �c (5.11)

where xd = [�u, �w, �q, �✓, �h]T is the aircraft longitudinal state vector containing

deviation in forward speed u, down speed w, pitch rate q, pitch angle ✓, and altitude

h. F d is the plant matrix, G� is the input coe�cient matrix, and �c is the control

input containing elevator deflection and thrust change. More details may be found in

Appendix A.
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The discrete form of (5.11) is

xdk = �dxdk�1
+ ���ck�1

(5.12)

where �d and �� are discrete representations of F d and G�, respectively.

The control input �ck is generated based on the state estimate feedback as

�ck = �Kx x̂
KF
k � Kq�q̂k (5.13)

where the first term represents state feedback of position, velocity and attitude, the

second term adds pitch rate feedback, and Kx and Kq are controller gain matrices.

Since the conventional INS state vector xk does not contain the pitch rate

�qk, which is required for the controller, the control law in (5.13) is separated into

two terms. Remember uk = [. . . , �qk, . . .]T is the vector containing specific force and

angular velocity, therefore the pitch rate estimate �q̂k in (5.13) can be extracted as

�q̂k = T q ûk. Using (4.15), ûk is obtained in terms of the IMU measurement vector

ũk as ûk = ũk � b̂k. Recall xk = [. . . , bk, . . .]T , therefore the bias estimate b̂k is

extracted as b̂k = T b x̂KF
k . Substituting these transformations into (5.13), the control

input is re-written as

�ck = �
�
Kx � KqT qT b

�
x̂KF
k � KqT q ũk. (5.14)

The main aim of introducing the aircraft dynamic model in (5.11) is to augment

the controller and observer through the specific force and angular velocity u measured

by the IMU. u can be extracted from the aircraft state derivative ẋd as u = T u ẋd

where T u is a 6 ⇥ 5 matrix that extracts the longitudinal specific forces and angular

rates from ẋd and inserts zeros corresponding to the lateral ones. This can be re-

expressed in discrete form by utilizing (5.11) as

uk = T u

�
F dxdk + G� �ck

�
(5.15)

Substituting (5.15) with the transformations bk = T bxk and ⌫nk
= T ⌫ wk into
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the IMU measurement model (2.26), we obtain the IMU measurement ũk as

ũk = T u

�
F dxdk + G� �ck

�
+ T bxk + T ⌫wk (5.16)

where recall that wk ⇠ N (0,W k) was previously defined in (2.28).

Using x̂KF
k = xk + x̃KF

k , one can solve for ũk and �ck in (5.14) and (5.16) in

terms of the actual navigation state xk and its estimate error x̃KF
k , the aircraft state

xdk , and the INS process noise wk as

ũk = Uxxk + Ux̃ x̃
KF
k + Udxdk + Uwwk (5.17)

and

�k =�xxk +�x̃ x̃
KF
k +�dxdk +�wwk, (5.18)

respectively, where the coe�cient matrices in (5.17) and (5.18) are obtained as func-

tions of the state feedback gain matrices Kx and Kq, and aircraft dynamic model

parameters F d and G�, which are derived in Appendix E.

5.1.3 Augmented Performance Evaluation Model. Augmenting the aircraft

model in (5.12) and the Kalman model in (5.10) with the substitutions in (5.17) and

(5.18) yields a closed-loop evaluation model [7] as

2
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77775
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0 L
0

k�x 0 0

0 �Hk�x 0 0

���x ���x̃ 0 �d + ���d
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664
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3

775
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+

2

66664

0

Lk

I

0

3

77775
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 yk

f
0

k

(5.19)
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where y is defined as the augmented state vector of the closed-loop evaluation model.

�y, ⌥y, and  y are the augmented state transition, noise coe�cient, and fault input

coe�cient matrices, respectively.

Using (5.19), the mean E[yk] and covariance Y k of the closed-loop evaluation

model state vector y can be propagated as

E[yk] = �ykE[yk�1] + yk f
0

wk
(5.20)

and
Y k = �yk Y k�1�

T
yk
+⌥ykW yk⌥

T
yk
, (5.21)

respectively, where W yk is the covariance matrix of wyk . Note that E[wk�1w
T
k�1] =

E[wk�1⌫
T
⇢�k

] = 0.

5.2 Spoofing Integrity Risk

Recalling (3.56), the vertical position estimate error "k is extracted from the

state estimate error x̃KF
k as

"k = t" x̃
KF
k . (5.22)

The noncentral chi-square distributed cumulative test statistic qk and its non-centrality

parameter �2k are previously defined in (3.30) and (3.32), respectively, as

qk = �
T
1:k S

�1
1:k �1:k (5.23)

and
�
2
k = E[�T

1:k]S
�1
1:k E[�1:k] (5.24)

where �1:k = [�1, . . . ,�k]
T is the innovations history vector and S1:k is the block

diagonal matrix composed of the innovation covariances Si’s (0 < i  k) which are

extracted from Y in (5.21) as
Si = T �Y iT

T
� (5.25)

where T � extracts the rows of yk corresponding to �k.

Using the evaluation model (5.10), it is proved in Appendix D that E[x̃KF
i �

T
j ] =

0 for all i � j. Therefore, the cumulative test statistic qk obtained from the current
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and past innovations and the altitude error "k obtained from the current state estimate

error will be statistically independent. As a result, integrity risk Irk in (3.55) can be

written as a product of two probabilities

Irk = Pr (|"k| > l) Pr (qk < T ) (5.26)

5.3 Kalman Filter-based Worst–Case Fault Derivation

Because all GNSS measurements may be impacted by the spoofing attack,

it is assumed that all GNSS measurements are faulty during the attack period and

that the IMU measurements are the only fault-free sources of redundancy in the

monitor. If a spoofing attack is not detected instantaneously, it may impact the

INS error state estimates through the tightly coupled mechanism, which can degrade

subsequent detection ability. Therefore, a smart spoofer may select a fault profile

f 1:k = [f 1, . . . ,fk]
T with smaller faults at the beginning and gradually increasing over

time, thereby corrupting INS calibration, leading to a lower probability of detection.

A worst-case fault derivation based on a batch estimator was previously intro-

duced in [20]. Here, we extend the theory to derive the worst-case fault profile that

maximizes the Kalman filter estimate error associated with the most hazardous state

"k while minimizing the cumulative test statistic qk. To obtain the optimal direction

and magnitude of the worst-case fault history vector f 1:k, we use the evaluation model

in (5.19) and conservatively assume that the spoofer has knowledge of the exact error

models for the aircraft’s INS/GNSS system and his/her own position tracking sensor.

Equations (5.20) and (5.24) indicate that the fault history vector f 1:k a↵ects

the mean of x̃k and the non-centrality parameter �2k of the cumulative test statistic

qk. The ratio E["k]2/�2k is called the failure mode slope ⇢2k [20]. The optimization

problem for obtaining the worst-case fault can be formulated as

arg max
f1:k

⇢
2
k (5.27)
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Recall that "k and �2k are functions of the state estimate error x̃k and the innovation

history vector �1:k, respectively. Also, x̃k and �k are both linear functions of f 1:k.

Using (5.20) and (5.19), the means of x̃k and �k can be extracted as

E[x̃k] = L
0

k�x| {z }
L

00

k

E[x̃k�1] + Lkfk (5.28)

and
E[�k] = �Hk�x E[x̃k�1] + fk, (5.29)

respectively, since E[f 0

k] = fk with the assumption of x̃s ⇠ N (0,P s
x) – i.e., that the

spoofer’s tracking error is unbiased, which is conservative.

Given a fault-free initial condition as E[x̃0] = E[�0] = 0, the particular solution

to the di↵erence equation (5.28) is obtained as a function of f 1:k as

E[x̃k] =
h
A1k . . . Akk

i

| {z }
Ak

2

664

f 1
...

fk

3

775

| {z }
f 1:k

(5.30)

where

Aik =

(
L

00

kL
00

k�1 . . .L
00

1+iLi if i < k

Li if i = k
. (5.31)

Substituting (5.30) into (5.29) gives the mean of innovation as a function of f 1:k as

E[�k] =
h
�Hk�Ak�1 I

i

| {z }
Bk

"
f 1:k�1

fk

#

| {z }
f 1:k

. (5.32)

Let Bi =
⇥
Bi,0n⇥n(k�i)

⇤
where n is the number of measurements at each time epoch

and 0 < i < k. Then, substituting (5.32) into (5.24) gives the non-centrality param-

eter of the cumulative test statistic in block matrix form as

�
2
k = f

T
1:k

h
B

T
1 . . . B

T
k

i
2

664

S
�1
1

. . .

S
�1
k

3

775

| {z }
S

�1
1:k

2

664

B1

...

Bk

3

775

| {z }
B1:k

f 1:k (5.33)
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where B1:k is a lower block triangular matrix.

Substituting (5.30), (5.33) and (5.22) into (5.27) gives the failure mode slope

⇢k as a function of the fault history vector f 1:k as

⇢
2
k =

f
T
1:k A

T
k t

T
" t"Ak f 1:k

f
T
1:k B

T
1:k S

�1
1:k B1:k f 1:k

. (5.34)

To determine the direction of the vector f 1:k that maximizes ⇢k, a change of variable

is performed by defining f̆ 1:k as

f̆ 1:k =
�
S

�1/2
1:k B1:k

�
f 1:k. (5.35)

The failure mode slope in (5.34) can be rewritten in terms of f̆ 1:k as

⇢
2
k =

f̆
T

1:kk 
T
k f̆ 1:k

f̆
T

1:k f̆ 1:k

(5.36)

where k is a column vector defined as

k =
�
S

�1/2
1:k B1:k

��T
A

T
k t

T
" . (5.37)

From (5.36), it can be concluded that f̆ 1:k that maximizes the fault mode slope ⇢2k

must be in the direction of the vector k. Let us denote the worst-case fault history

vector fw1:k
with a magnitude ↵w and a direction fw1:k

as

fw1:k
= ↵w fw1:k

(5.38)

Using (5.35) and (5.37), the worst-case fault direction fw1:k
is obtained as

fw1:k
= B

�1
1:kS1:kB

�T
1:k A

T
k t

T
" (5.39)

So far, we analytically obtained the worst-case fault vector direction fw1:k
in (5.39)

from a fully deterministic objective function in (5.27). The worst-case fault magnitude

↵w in (5.38) is a scalar that maximizes the integrity risk Irk in (5.26) along the worst-

case fault direction. Unlike the worst-case fault direction optimization, the magnitude

optimization has a stochastic objective function Irk in (5.26), which is influenced by

the spoofer’s position tracking sensor noise. In Sections 5.1 and 5.2, we explained
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Figure 5.3. The worst-case fault and failure mode slope for a 140 s approach flight
of B747 with a GNSS sampling frequency of 2 Hz. The marker (+) on the failure
mode slope corresponds to the worst-case fault for this scenario. The black curves
are lines of constant joint probability density obtained using (5.26).

how to compute the joint probability Pr (|"k| > l, qk < T ) for a given vector f
0
, which,

as defined in (5.3), assumes a given deterministic spoofer’s tracking error x̃s. To

statistically account for variability in x̃s, we express the integrity risk in terms of

probability density function f(x̃s) as

Irk(↵) =

Z
· · ·

Z

x̃s

Pr (|"k| > l, qk < T ;↵ | x̃s) f(x̃s) dx̃s (5.40)

To compute the integral in (5.40) in the simulation, we generatem samples x̃s
1, x̃

s
2, . . . , x̃

s
m

from the normally distributed x̃s ⇠ N (0,P s
x ) and compute the integrity risk for dif-

ferent values of the fault magnitude ↵

Irk(↵) =
1

m

mX

i=1

Pr (|"k| > l, qk < T ;↵ | x̃s
i ) (5.41)

The worst-case value for the fault magnitude ↵w is determined through a one dimen-

sional search to maximize Irk(↵) in (5.41). It should be mentioned that even though
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a framework for capturing the GNSS measurement fault’s e↵ect on the actual aircraft

motion (i.e., xk) in position domain is presented in (5.19), the integrity risk derived

in (5.41) is independent from the aircraft motion (i.e., aircraft dynamics). Therefore,

the integrity analysis results which are given in the following section apply regardless

of the aircraft model. However to illustrate the aircraft’s responses to a worst-case

spoofing attack, we use an example B747 model since its aerodynamic parameters are

publicly available.

5.4 Tightly–Coupled INS Monitor Performance Analysis Results

To test the performance of the INS spoofing monitor, a covariance analysis with

a B747 flight on approach is simulated at the standard trimmed flight conditions at

131 knots [14]. The B747 aircraft dynamics are modeled with a generic altitude hold

autopilot utilizing the longitudinal stability derivatives in [20] at standard sea-level

conditions. The navigation-grade IMU sensor and GNSS receiver specifications are

provided in Tables F.1 and F.2, respectively. Since the spoofer is assumed to have a

limited range, the spoofing attack will be of limited duration. Therefore, we assume

that the state estimator has been running under fault free conditions and has reached

steady state before the spoofing attack starts.

To investigate the performance of the INS monitor, we initially assumed a

spoofing attack with perfect tracking sensors, capable of tracking the exact aircraft

position (x̃s
k = 0), and computed the worst-case fault profile for a given spoofing

attack period. An example worst-case fault and its failure mode slope for a 140 s

B747 approach is illustrated in Fig. 5.3. The square root of the test statistic q
1/2
k and

vertical position error "k are represented on the x-axis and y-axis, respectively. The x-

y plane is divided into four quadrants by a vertical alert limit l = 10 m and a threshold

T
1/2 = 56.4, computed from the inverse cumulative chi-square distribution for a false

alarm probability of 10�6. The second quadrant refers to the area of hazardous
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Figure 5.4. The impact of spoofing attack period and GNSS sampling frequency on
the integrity risk. The results are obtained for a B747 landing approach in the
presence of a worst-case spoofing attack with closed-loop position tracking using a
sensor having perfect accuracy and no-delay.

misleading information (HMI), where undetected faults result in unacceptably large

estimation errors. The probability of being in the HMI area corresponds to the

integrity risk in (5.26). Each point (�k, µ"k) on or below the failure mode slope line

(blue line) on the x-y plane corresponds to a di↵erent fault, and for this scenario the

worst-case fault fw1:k
is obtained at the marker (�k = 26.8 m, µ"k = 9.7 m) located

on the worst-case failure mode slope. This worst-case fault results in a distribution

represented as the oval shape contours of constant joint probability density (black

curves). In this example, the integrity risk for the worst-case fault is computed to be

Ir = 5.9 ⇥ 10�6.

To quantify the impact of the spoofing attack period on the integrity risk, we

obtained the worst-case fault profiles for di↵erent attack periods ranging from 130

to 210 s and computed the corresponding integrity risks. As seen in Fig. 5.4, if the

spoofer has perfect position tracking sensors, increasing the attack period eventually
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Figure 5.5. The impact of the spoofing attack period on the vertical position com-
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280 s (right), the consequent estimate error growth and the aircraft’s altitude loss
from nominal approach (due to the autopilot response to the injected fault) are
plotted. Note that the true state x and its estimate error x̃KF curves are nearly
symmetric due to the autopilot’s e↵ort to hold the altitude estimate x̂KF at the
nominal during approach (i.e., x̂KF = x+ x̃KF = 0).

causes high integrity risks. The reason is that, increasing the spoofing time allows

the spoofer to inject faults to the system in a less aggressive way (see Fig. 5.5), slowly

corrupting the estimation of INS states and thereby reducing the monitor’s ability

to detect the spoofing attack. On the other hand, for limited attack periods, the

integrity risk is considerably low. For example, at the GNSS sampling frequency of

2 Hz (Fig. 5.4), the worst-case attacks having a period shorter than 135 s results in

integrity risks of less than 10�7 even though the spoofer tracks the aircraft position

with zero-error. Fig. 5.4 also illustrates that at lower GNSS sampling rates, worst-case

spoofing attacks result in lower integrity risks for the same attack periods.

The results so far assume that the spoofer is able to estimate the exact position

of the aircraft. In a more realistic scenario, the errors in position tracking must be

accounted for. Therefore, we assume that the spoofer’s position estimate error is a

zero-mean white noise x̃s
k ⇠ N (0,P s

xk
) sequence. White noise is typical for laser



71

0

2

4

6

160
180

200
220

10
−9

10
−6

10
−3

10
0

Standard Deviatio
n of

Positio
n Tracking Erro

r [m
m]

Spoofing Attack Period [s]

In
te

g
ri
ty

 R
is

k

Figure 5.6. The impact of altitude tracking error and attack period on the integrity
risk in the presence of worst-case spoofing attacks with a GNSS sampling frequency
of 2 Hz.

tracking errors. Utilizing (5.41), we illustrate how the INS monitor leverages the

spoofer’s altitude tracking errors to detect spoofing attacks. Fig. 5.6 shows that for a

position tracking error of more than 4 mm (1-sigma), the integrity risk always remains

below 10�9, which is the most stringent safety requirement in aviation applications

[37]. Even though 4 mm instantaneous error is very small in the position domain, the

monitor integrates these errors over time. The accumulated error has a considerable

influence on the detection test statistic, which makes the monitor remarkably sensitive

to the spoofing attacks. The results are very promising because such tracking accuracy

by the spoofer is unrealistic using any combination of existing high-grade position

tracking systems (e.g., laser, radar, vision) [8].
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CHAPTER 6

MONITOR PERFORMANCE IN GBAS–ASSISTED AIRCRAFT LANDING
APPROACH

In this chapter, we evaluate the performance of the Kalman filter innovations-

based monitor in a loosely-coupled INS/GNSS mechanization. Our specific applica-

tion of interest is aircraft landing approaches assisted by Ground-Based Augmentation

Systems (GBAS). In Chapters 4 and 5, we focused on relative navigation applications

where both the di↵erential code and carrier measurements are available for use di-

rectly in the airborne Kalman filter estimator. On the other hand, in this chapter

we assume only the di↵erential carrier-smoothed code measurements are available

at the aircraft, which is consistent with both GBAS and SBAS (Space-Based Aug-

mentation Systems) avionics implementations. In this configuration, GBAS position

solution is fed into a Kalman filter in a loosely-coupled INS-GNSS integration scheme

(Figure 6.1).

In monitor performance evaluation, the Kalman filter-based worst-case fault

derivation introduced in Section 5.3 is extended to the loosely-coupled INS-GNSS

integration. Utilizing this worst-case fault, we simulate GBAS-assisted landing ap-

proaches of a B747 to determine the minimum required accuracy levels of the spoofer’s

position tracking to produce unacceptably large integrity risk at the aircraft.

6.1 Evaluation Model for Detection Performance

The functional diagram used in the monitor performance evaluation is shown in

Figure 6.1. This block diagram captures the closed-loop relation between the Kalman

filter (KF), the GBAS airborne smoother (Hatch filter) and weighted least-squares

estimator (LSE) in presence of a spoofer capable of tracking the aircraft position and
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Figure 6.1. The performance evaluation model for the INS spoofing monitor utilizing
a loosely-coupled integration of INS and GBAS.

injecting a fault f through GNSS signals ⇢ and �.

6.1.1 Spoofed GBAS Position Solution. In a spoofing attack, the spoofer

broadcasts raw code and carrier signals, which mimic the actual GNSS signals with

an additional fault
"

⇢
s
k

��
s
k

#
=

"
⇢k

��k

#
+

"
I

I

#
(fk + Gk �r̃

s
k)| {z }

f
0

k

(6.1)

where ⇢
s
k and �

s
k are the spoofed code and carrier signals, ⇢k and �k are the original

code and carrier signals, and f
0

k is the resultant fault vector containing the spoofer’s

position tracking estimation error �r̃s
k = �r̂

s
k � �rk and the computed fault fk. Equa-

tion (6.1) assumes that the spoofer preserves the consistency in the code and carrier

signals by using the same fault for both the code and carrier signals. Otherwise, the

spoofing attack will be detectable by the Code Carrier Divergence (CCD) airborne

monitors in [50]. Also, as in Chapter 5, the spoofer’s position estimation error �r̃s in

(6.1) is modeled as a white Gaussian noise additive to fk.

It can be shown that the resultant fault f
0

k term in (6.1) will not be smoothed
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out by the airborne Hatch filter (Fig. 2.3) since it is the same for the spoofed code

and carrier signals. Therefore, the spoofed carrier-smoothed code ⇢
s
k (output of the

filter) can be expressed as
⇢
s
k = ⇢k + f

0

k (6.2)

where ⇢k is the original GBAS carrier-smoothed code for the spoof-free case, which

was previously defined in (3.12). Substituting (3.12) into (6.2) gives the spoofed

carrier-smoothed code measurement

⇢
s
k =

h
Gk 1

i

| {z }
G⇢k

"
�rk

�⌧k

#
+ ✏k + f

0

k. (6.3)

Replacing the spoof-free measurement ⇢k in (3.12) with the spoofed measurement ⇢
s
k

in (6.3) and re-deriving the equations from (3.13) to (3.20) yield a spoofed GBAS

weighted least squares position solution �r̂LS
k in terms of the fault vector f

0

k as

�r̂
LS
k = Hkxk + T rG

+
⇢k

f
0

k| {z }
f

00

k

(6.4)

which is also the measurement input to the loosely-coupled Kalman filter estimator.

6.1.2 Spoofed Kalman Filter Solution. Substituting (6.4) into (3.23) gives the

Kalman filter measurement update as a function of the fault as

x̂KF
k =

�
I � LkHk

�
| {z }

L
0

k

xKF
k + LkHkxk + Lkf

00

k.

(6.5)

Also, substituting the Kalman filter time update equation (3.22) into (6.5) yields

x̂KF
k = L

0

k�x x̂
KF
k�1 + LkHkx

KF
k + L

0

k�x ũk�1 + Lkf
00

k. (6.6)

Let us define the state estimate error as x̃KF
k = x̂KF

k �xk. Subtracting the INS process

model (3.21) from (6.6) gives the state estimate error dynamics as

x̃KF
k = L

0

k�x x̃
KF
k�1 � L

0

kwxk�1
+ Lkf

00

k. (6.7)

Similarly, the innovation vector under a spoofing attack is obtained by substituting

(6.4) into (3.27) as
�k = f

00

k � Hk

�
�x x̃k�1 � wxk�1

�
. (6.8)
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6.1.3 Loosely–Coupled Performance Evaluation Model. Augmenting the

state estimate error model in (6.7) with the innovation model in (6.8) results in a

performance evaluation model capturing the impact on the state estimate error and

the innovation due to the spoofer’s deliberate fault and unknown tracking errors (both

included in f
00

k):
"
x̃KF
k

�k

#
=

"
L

0

k�x 0

�Hk�x 0

#

| {z }
�yk

"
x̃KF
k�1

�k�1

#

| {z }
yk�1

+

"
�L

0

k

Hk

#

| {z }
⌥yk

wxk�1
+

"
Lk

I

#

| {z }
 yk

f
00

k (6.9)

where y is defined as the augmented state vector of the evaluation model capturing

the estimate error and innovation dynamics. �y, ⌥y, and  y are the augmented

state transition, noise coe�cient, and fault input coe�cient matrices, respectively.

6.2 Worst–Case Fault Maximizing Integrity Risk in GBAS

It should be mentioned that the loosely-coupled evaluation model (6.9) is struc-

turally a subset of the the tightly-coupled evaluation model (5.19) derived in Chap-

ter 5. Therefore, the methods for computing the integrity risk and worst-case fault

introduced in Sections 5.2 and 5.3, respectively, are also applicable for the loosely-

coupled evaluation model in (6.9).

Using (5.38) and (5.39), the worst case fault history vector f
00

w1:k
is written as

f
00

w1:k
= ↵w B

�1
1:kS1:kB

�T
1:k A

T
k t

T
" (6.10)

where t" extracts the hazardous state " (i.e. altitude in the landing approach prob-

lem) from the state vector x; and Ak and B1:k are the constant matrices defined as

functions of the deterministic coe�cients H i, �x, Li, and L
0

i of the loosely-coupled

evaluation model in (6.9) as

Ak =
h
A1k . . . Akk

i

Aik =

(
L

0

k�xL
0

k�1�x . . .L
0

1+i�xLi if i < k

Li if i = k

(6.11)
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and

B1:k =
h
B

T
1 . . . B

T
k

iT

Bi =
h
�Hk�xAk�1 In⇥n 0n⇥n(k�i)

i (6.12)

where k is the number of GNSS time epochs and n is the number of GBAS measure-

ments feeding the Kalman filter at each time epoch (n = 3 in the loosely-coupled

integration). Using (5.41), the scalar worst-case fault magnitude ↵w in (6.10) is de-

termined through one dimensional search to maximize the integrity risk Irk as

arg max
↵

Irk(↵) =
1

m

mX

i=1

Pr (|"k| > l;↵ | �r̃s
i ) Pr (qk < T ;↵ | �r̃s

i ) (6.13)

where �r̃s
i ’s are samples obtained from the normally distributed white error �r̃s ⇠

N (0,P s
�r).

6.3 Loosely–Coupled INS Monitor Performance Analysis Results

To test the performance of the loosely-coupled INS monitor, a covariance anal-

ysis with a B747 flight on a GBAS-assisted approach is simulated at standard trimmed

flight conditions at 131 knots [14]. The navigation-grade IMU sensor specifications

and the parameters for the GBAS error model defined in Appendix C are provided

in Table F.1 and Table F.3, respectively. We assume that the airborne estimator

has been running under fault free conditions and has reached steady state before the

spoofing attack starts.

To quantify the impact of the spoofing attack period on the integrity risk, we

obtained the worst-case fault profiles for di↵erent attack periods ranging from 152

to 232 s and computed the corresponding integrity risks assuming the spoofer has

perfect position tracking sensors (i.e., �r̃s
k = 0). As seen in Fig. 6.2, increasing the

attack period allows the spoofer to achieve higher integrity risks. On the other hand,

even though we conservatively assumed that the spoofer tracks the aircraft position

with zero-error, the worst-case spoofing fault for a standard B747 approach of 150 s
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Figure 6.2. The impact of spoofing attack period on the integrity risk. The results
are obtained for B747 GBAS-assisted approaches in the presence of worst-case
spoofing attacks when the spoofer is capable of tracking the aircraft position with
perfect accuracy.

results in an integrity risk of approximately 10�9, which satisfies the most stringent

safety requirement in aviation [37].

In a more realistic scenario, we assume that the spoofer’s position estimate

error is a zero-mean white noise �r̃s
k sequence. Fig. 6.3 shows that for a position

tracking error of more than 7 cm (1-�), the integrity risk always remains below 10�9

for spoofing attacks having a period of up to approximately 230 s. This 230 s attack

period is probably high since the standard B747 approach is 150 s and the spoofer

will have a limited range. The results are promising because such tracking accuracy

is extremely di�cult even for the highest technology remote tracking systems. For

example, Figure 6.4 illustrates the ranging accuracy of an Sense and Avoid (SAA)

radar system [8]. We plot the range accuracy of SAA within 10 km line of sight

since it corresponds to a standard B747 approach of 150 s. As seen in the figure,

1-� range accuracy of the radar (blue line) drops to 170 cm within the approach

volume. On the other hand, for the spoofer to achieve an integrity risk of equal or
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Figure 6.3. The influence of spoofer’s tracking errors on detection performance of the
monitor using loosely-coupled INS/GNSS integration in terms of the integrity risk.

higher than 10�9, he/she has to maintain a minimum of 7 cm (1-�) accuracy during

whole attack period of 232 s, which is far beyond the capability of existing SAA

remote tracking systems. Also, maintaining this high tracking accuracy during whole

aircraft approach is unrealistic due to uncertainties in the lever arm from the GNSS

antenna location to the spoofer’s measurement point on the aircraft.

6.4 Loosely vs. Tightly Coupled INS Monitor Performances

The covariance analysis in this chapter demonstrates the performance of the

INS monitor using loosely-coupled systems (i.e., GBAS). The monitor performance

for tightly-coupled systems (i.e., shipboard landing and autonomous airborne refuel-

ing) was shown in Chapter 5. Fig. 6.5 compares detection capability of the monitor

implemented with the loosely and tightly-coupled systems. The left plot shows the

integrity risk values as a function of the spoofing attack period in presence of worst-
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Figure 6.5. Comparison of performance of the INS monitors for the tightly and
loosely-coupled systems. The integrity risk are given as a function of spoofing at-
tack period in the presence of worst-case spoofing attacks with perfect tracking
(left). The monitor sensitivity to the spoofer’s tracking error for an example ap-
proach of 200 s is also given in terms of the integrity risk (right). The integrity risk
values for the tightly-coupled systems (black curves) are extracted from Figure 5.6.

case spoofing attacks with perfect position tracking. The plot shows that the loosely

coupled INS/GNSS integration results in lower integrity risk than the tightly-coupled

integration does. The reason is that the tightly-coupled integration scheme gives the

spoofer better opportunity to fuse the GNSS spoofing fault into the system (by di-
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rectly inputting the spoofed GNSS measurements into the Kalman filter) and thereby

corrupt the IMU biases. However, in the more realistic scenario where the spoofer has

position tracking errors, the right plot illustrates that the monitor with the tightly-

coupled system is more sensitive to the spoofer’s tracking errors than that with the

loosely-coupled system. For example, for the same spoofing attack period (200 s), the

tracking error (1-�) resulting in a 10�9 integrity risk is 4 mm in the tightly-coupled

systems, whereas it is 60 mm in the loosely-coupled systems. Regardless, both sys-

tems meet 10�9 integrity risk requirements for the aviation applications given the

realistic tracking accuracy.
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CHAPTER 7

UNCOUPLED INS MONITOR PERFORMANCE IN AIRCRAFT EN ROUTE
FLIGHT

This chapter evaluates the performance of the uncoupled INS monitor in en

route flight applications that use the standalone GNSS for positioning. We investigate

whether a free-INS solution can be used as a sanity check to a spoofed GNSS-only

least squares position estimate. To do this, we analytically derive and utilize the

worst-case spoofing fault for the uncoupled INS/GNSS integration. In the perfor-

mance analysis, the IMU is assumed to be well-calibrated prior to a spoofing attack.

Utilizing di↵erent-grade (i.e. navigation and tactical) IMUs, we quantify the maxi-

mum allowable time interval between the INS calibration to detect worst-case GNSS

spoofing faults with low integrity risk (i.e. Irk < 10�9).

7.1 Uncoupled Monitor Influenced with GNSS Spoofing Fault

In this section, we derive evaluation models capturing the impact of the fault

on the GNSS least squares estimator and uncoupled INS detector as shown in Fig-

ure 7.1. Using the standalone GNSS measurement model (3.45), the spoofed code

measurement ⇢
s
k is expressed as

⇢
s
k =

h
Gk 1

i

| {z }
Hk

"
�rk

�⌧uk

#
+ ⌫

0
⇢k

+ fk (7.1)

where fk is the fault vector computed by the spoofer. Replacing the spoofed code

⇢
s
k in (7.1) with the spoof-free code ⇢k in (3.46) and using the definition of �r̃LS

k =

�r̂
LS
k � �rk, we obtain the least squares position estimation error as a function of the

fault
�r̃

LS
k = T r H

+
k

�
⌫
0
⇢k

+ fk

�
. (7.2)
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Figure 7.1. Uncoupled INS monitor performance evaluation model capturing the
impact of the fault f on the GNSS-only least squares estimation (LSE) and the
detection with uncoupled INS.

Similarly, subtracting (3.49) from (3.50) and using the definition of x̃
INS
k = x

INS
k �xk,

the state estimate error propagation in INS-only approach is performed as

x̃
INS
k = � x̃

INS
k�1 � wk�1. (7.3)

Substituting (7.3) and (7.2) into (3.52), the test statistic is re-expressed as

qk = t"rT rH
+
k (⌫

0
⇢k

+ fk) � t"x

�
� x̃

INS
k�1 � wk�1

�
. (7.4)

7.2 En Route Spoofing Integrity Risk

Recall that the integrity risk is defined in (3.55) as the joint probability Irk =

Pr (|"k| > l, qk < T ) where the hazardous state " in en route applications is typically

the horizontal position estimation error, which can be extracted from the GNSS least

squares position estimation error �r̃LS as

"k = t"r �r̃
LS
k . (7.5)

Using (7.2), (7.4), and (7.5), it can be shown that the test statistic qk and hazardous

state estimation error "k are correlated. To solve the joint probability in (3.55), we
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define a vector containing qk and "k and obtain a bi-variate Gaussian distribution as

[qk, "k]
T ⇠ N

�
µk,⌃k

�
. (7.6)

Propagating the equations from (7.2) to (7.5) with x̃
INS
0 ⇠ N (0,P x0), the mean vector

µk = [µqk , µ"k ]
T is obtained as a function of the fault fk

µqk = µ"k = t"rT rH
+
k fk, (7.7)

and the covariance matrix ⌃k is obtained as

⌃k =

2

4�
2
qqk

�
2
q"k

�
2
q"k

�
2
""k

3

5 (7.8)

where

�
2
qqk

= t"rT r

�
H

T
k V

0�1

⇢k
Hk

��1
T

T
r t

T
"r + t"x

h
�k

P x0�
kT +

kX

i=1

�i�1
W i�

i�1T
i
t
T
"x (7.9)

�
2
""k

= �
2
q"k

= t"rT r

�
H

T
k V

0�1

⇢k
Hk

��1
T

T
r t

T
"r. (7.10)

The integrity risk in (3.55) can be solved numerically using the bivariate Gaussian

distribution derived in (7.6).

7.3 Worst–Case Fault Derivation for Uncoupled Integration

The Kalman filter-based worst case fault derivations for the tightly and loosely-

coupled monitors are introduced in Sections 5.3 and 6.2. In this section, we derive the

worst-case fault profile for the uncoupled monitor. The worst-case fault maximizes

the GNSS-based least squares estimate error associated with the most hazardous state

"k while minimizing the test statistic qk and this maximizes the integrity risk. Recall

that the ratio ⇢k = µ"k/µqk is called the failure mode slope, and (7.7) indicates that

it is always one for the uncoupled monitor:

⇢k = 1. (7.11)

From (7.11), one can conclude that the center of the bi-variate distribution defined

in (7.6) will always lie on a failure mode slope line passing from origin with a 45o
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Figure 7.2. An example fault on the solution separation failure mode slope of 1. The
marker (+) on the failure mode slope corresponds to the worst-case fault for this
scenario. The black curves are the covariance ellipses of the bivariate Gaussian
distribution obtained from (7.6).

slope regardless of the fault vector (Fig. 7.2). To obtain the worst-case fault, we first

determine the worst-case mean µk of the bi-variate distribution on the failure mode

slope, which maximizes the integrity risk Irk in (3.55) as

arg max
µqk

Irk (7.12)

Utilizing Equations (7.6) to (7.10), the unique solution to the worst-case test statistic

mean µ
⇤
qk

is determined through one dimensional search to maximize Irk in (7.12).

Let n be the number of measurements at each time epoch, for a given µ
⇤
qk
, (7.7) yields

an (n � 1)-parameter family of solutions for the worst-case fault vector f
⇤
k, which is

used to generate worst-case spoofed GNSS signals broadcast by the spoofer.

In the uncoupled case so far, we assume that the spoofer has perfect knowledge

of the aircraft position. Unlike in the tightly and loosely-coupled monitors where the
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Figure 7.3. The integrity performance of the uncoupled monitor using navigation
grade, and high-end and low-end tactical grade IMU sensors.

spoofer’s tracking errors accumulate over time, in uncoupled monitor the leveraging

e↵ect of this accumulation of tracking error does not exist. The reason is that the

monitor in the uncoupled integration (3.52) checks the instantaneous discrepancy

between INS and GNSS solutions; and the impact of the tracking errors at that

one instant will be small. Therefore, we will only investigate the perfect tracking

scenarios.

7.4 Performance Analysis Results

To test the performance of the uncoupled INS monitor, a covariance analysis

with a B747 en route flight is simulated by using a standalone GNSS receiver (�⇢c,u = 3

m) with free running navigation-grade and tactical-grade IMUs (Table F.1). We

assume that the IMU is calibrated until it reaches steady-state before the spoofing

attack starts. In the integrity risk computations, we use a horizontal alert limit

l of 1.85 km which is a standard requirement for terminal en route in continental

operations [37].

As seen in Figure 7.3, if the time elapsed from the last IMU calibration is



86

su�ciently long, the worst-case spoofing attacks result in high integrity risks, which

is expected. On the other hand, with a standalone navigation grade IMU (which

is typically used in airliners), the monitor provides a spoofing protection with an

integrity risk lower than 10�7 (the terminal and en route integrity risk requirement) up

to 46 min, which would be an unrealistically long spoofing attack. To also investigate

the impact of the IMU quality on the spoofing detection performance of the monitor,

we obtain the integrity risk results with high-end and low-end tactical grade IMUs,

which are typically used in military aircraft, missiles, and drones. The tactical grade

IMUs guarantee the spoofing integrity up to ranging from 4 (low-end) to 12 (high-end)

min.
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CHAPTER 8

CONCLUSION

GNSS spoofing attacks are an emerging threat; they are not only theoreti-

cal but have actually been witnessed in the last decade [60]. The U.S. government

had tasked the Department of Transport and Homeland Security in 2014 to develop

backup capability in response to these man-made threats to GPS systems. This

dissertation has directly addressed the need to detect GNSS spoofing attacks by de-

signing autonomous INS monitors for high safety and precision applications such as

manned or unmanned aircraft landings and en route operations. An integrity risk

methodology has also been developed to evaluate the monitor’s performance under

worst-case spoofing attacks. These methods can lead to fully tested and certifiable

INS monitors that can be implemented in aviation, and other terrestrial and maritime

navigation applications.

8.1 Summary of Accomplishments

The focus of this dissertation has been to investigate inertial sensor fusion and

fault monitoring techniques to guarantee spoofing resistance of GNSS-based high-

integrity navigation systems. These include aircraft landings to shipboard platforms

and airports equipped with GBAS facilities, and terminal en route flights. Areas of

contributions are discussed in the following subsections.

8.1.1 Developing INS Monitors. In this dissertation, INS-aided fault detection

(monitoring) algorithms against GNSS spoofers were designed, implemented, and

validated. The monitors developed here are simple, but e�cient and compatible with

navigation systems where GNSS receivers and INS sensors are integrated in tightly-
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coupled, loosely-coupled, and uncoupled schemes.

8.1.2 Performance Evaluation Methodology. This dissertation developed an

integrity risk evaluation methodology to quantify the statistical reliability of the new

monitors. The methodology enables quantification of integrity risk without needing

to simulate an unmanageably large number of individual flights. A novel closed-form

solution to the worst-case time sequence of GNSS fault is derived to maximize the

integrity risk for each INS/GNSS integration and it is used in the covariance analyses.

This methodology allows of the monitor performance against the most sophisticated

spoofers, capable of tracking and estimating the aircraft position – for example, by

means of remote tracking or onboard sensing.

8.1.3 Aircraft Dynamics E↵ect in Detection. Using a batch residual-based

monitor, we developed an evaluation model capturing the e↵ect of aircraft dynamics

on detection performance. In a realistic flight, an aircraft has transient response to

disturbances such as wind gusts or the autopilot’s maneuver commands in response to

the spoofing faults. These high-frequency responses on the aircraft nominal trajectory

are di�cult to capture in the spoofer’s tracking loop accurately and quickly, and we

showed in the analysis is a direct means to detect a spoofing attack. The results

illustrated that even under light turbulence conditions (less than 2.5 m/s wind gust

intensity) during a B747 approach, integrity risk is on the order of 10�7.

8.1.4 Verifying Monitors in Safety Critical GNSS Applications. GNSS

spoofing attacks are a critical threat to high safety GNSS augmentation systems such

as relative navigation and GBAS/SBAS. In response, we first designed Kalman filter

innovations-based monitors for both tightly-coupled and loosely-coupled INS/GNSS

integrations, then validated their performance in two example safety-critical applica-

tions: 1) autonomous shipboard landing (relative navigation) and 2) GBAS-assisted

B747 landing. We showed that for both systems, the monitors easily detected the
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worst-case spoofing attacks with less than 10�9 integrity risk, unless the spoofer main-

tains a position tracking with an accuracy of few millimeters (for shipboard landing)

and few centimeters (for GBAS), and no-delays. Such near-perfect accuracies are

unrealistic regardless of remote tracking or onboard sensing with the existing tech-

nology. We also compared performance and explained the di↵erences therein between

the tightly and loosely-coupled systems.

8.1.5 Sensor Requirements in General Enroute GNSS Applications. In

some general en route aviation and maritime applications, standalone GNSS posi-

tioning is used for guidance. In such applications, INS, in standalone mode, can be

used as an external aid against GNSS spoofers. However, in this uncoupled integra-

tion scheme, the sensor quality plays a significant role in the detection performance

as it drifts over time. In response, this dissertation proposed an uncoupled moni-

tor and quantified its performance with di↵erent quality INS sensors ranging from

navigation-grade to low tactical-grade IMUs. The results showed that the INS moni-

tor guarantees a spoofing-resistance up to 46 min with navigation-grade IMUs. This

sensitivity analysis established a baseline for relating the specific application’s in-

tegrity requirement to INS sensor requirements.

8.2 Recommended Topics for Future Research

A number of recommendations for future work are given in the following sub-

sections to enhance the INS monitor’s performance.

8.2.1 Optimal Detector Design. The proposed detectors in this dissertation are

simple, e�cient, and can directly be implemented on top of any type of INS/GNSS

integrations without requiring any modification to the existing navigation system.

However, when building a new integrated navigation system, it is possible to con-

struct the design such that both estimation accuracy and fault detection performance
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are maximized. Such flexibility would lead to a computationally more complex but

optimal detector. In this dissertation, it was shown that an improved detection per-

formance can be achieved by decreasing the GNSS measurement sampling rate (see

Figure 5.4) or varying the INS/GNSS integration scheme. However, for more compre-

hensive design the optimal detection theory, previously introduced in [21] to minimize

integrity risk due to satellite faults, can be considered in optimizing the INS monitors

for spoofing faults.

8.2.2 When to Start Monitoring. This dissertation focused on aircraft approach

to landing, which is a limited duration of 150 s. Therefore, in the performance

analyses in Chapters 4, 5, and 6, it was assumed that the monitoring starts with the

landing approach when the spoofing attack simultaneously starts. However, in an

en route operation, which allows spoofers (especially onboard spoofers) have a larger

time window for spoofing, the detection performance might be influenced adversely

if the monitor has been running prior to the spoofing attack (or the spoofing has

started prior to the monitor). Therefore, a sensitivity analysis needs to be performed

to quantify this e↵ect and to determine the maximum allowable monitoring time

window prior to a spoofing attack to guarantee the integrity.

8.2.3 Inertial Sensor Faults. Most commercial drones (e.g., quadrotors) are often

equipped with low-cost and lightweight industrial-grade IMUs which together with

GNSS receiver, serve an essential role. However, due to their intrinsic components and

fabrication process, IMUs are vulnerable to disturbances in the vehicle environment

and prone to faults. For example, inertial measurements are susceptible to bias and

excessive noise due to temperature variation and vibration [4]. The detection of IMU

faults plays a crucial role in safety-critical operations. To enhance the integrity of the

INS/GNSS integrated systems, detection of failures in INS and isolation of the faulty
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sensor are also needed to be addressed.

8.2.4 INS–Aided RAIM Detection and Exclusion Algorithms. RAIM

algorithms have traditionally been designed for the cases when only one satellite

failure occurs at a time. However, due to tighter alert limits especially in urban

environments, extending the RAIM concept to include multiple failures is currently

the main focus. Detection of simultaneous errors is challenging particularly using

only satellite redundancy, therefore INS redundancy, as an external aid, can be used

to improve the RAIM performance. The detection and evaluation methods presented

in this dissertation already cover the worst case of satellite faults (i.e., all satellites

are a↵ected). To complete the work, the strategies to exclude the spoofing faults and

to continue the operation will need to be addressed.

8.2.5 Hardware Testing. The Illinois Institute of Technology’s Navigation

Laboratory has ordered a tactical-grade IMU (Sensonor’s STIM300) which is to be

mounted on a static or dynamic platform (e.g., drone) to test the monitors proposed

in this research. The aim of the experiment is to demonstrate that the monitors can

be applied real-time and determine whether the nonlinearities in the actual system

deteriorate the detection performance. Transmitting live spoofing signals, except

with special permission at specified times and locations, is prohibited by Department

of Homeland Security. Therefore, instead of actual spoofing and broadcasting, the

original GNSS signals sensed by the vehicle’s receiver can be manipulated in a worst

way by executing a “bug-like” code in the vehicle’s flight control computer, which

represents a synthetic spoofing. This would enable one to do the hardware test a lot

faster and easier.

8.3 Closing

INS monitors are the absolute remedy to achieve GNSS spoofing-resistant
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positioning systems, which guarantee the navigation integrity of the most critical

aviation applications.
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APPENDIX A

AIRCRAFT DYNAMIC MODEL
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This appendix is for the derivation of linearized vertical aircraft dynamics.

Nonlinear aircraft longitudinal equations of motion in the form of coupled state equa-

tions are given as [65]

I22q̇ � (I33 � I11)pr + I13(p
2 � r

2) = M +MT (A.1)

m(u̇+ qw � rv) = �mgsin✓ +X +XT (A.2)

m(ẇ + pv � qu) = mgcos✓cos�+ Z + ZT (A.3)

where u, v, w are the velocity components in body-fixed stability axes in Fig. 2.1,

p, q, r are roll, pitch, and yaw rates, ↵, �, ✓ are angle of attack, side slip angle and

flight path angle, m is the aircraft mass; I11, I22, I33 are mass moment of inertias

represented in body frame; XT , ZT , MT are forces and moment due to thrust; X,

Z, M are aerodynamic forces and moments including drag, lift, pitch moment. The

three longitudinal EOMs in (A.1), (A.2) and (A.3) consist of the x-force, z-force, and

y-moment equations.

As we assume a perturbation from longitudinal trim flight, the nonlinear equa-

tions of motions (EOM) can be linearized by recasting each variable in terms of

perturbed variables and corresponding nominal values, which are the trimmed flight

conditions (p⇤ = q
⇤ = r

⇤ = 0). Variables with the superscript * correspond to the

equilibrium (trim) state. Note that only the axial velocity u and pitch angle ✓ have

non-zero equilibrium values. The trim values of all lateral/directional variables are

zero (v = � = � = 0) because the initial trim condition corresponds to longitudinal

equilibrium; the equilibrium value of w is zero because we use stability axes. These

simplifications produce a perturbed inertial forces and moment as [65]

�F
i
1 = m�u̇ (A.4)

�F
i
3 = m(�ẇ � u

⇤
�q) (A.5)

�M
i
2 = I22 �q̇ (A.6)

Neglecting the e↵ect of change in angle of attack on aerodynamic forces and moment

(M↵̇, Z↵̇ << 1), aerodynamic force and moment equations in variational form can be
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simplified as [65]
�X = m(Xu�u+X↵�↵ +Xq�q +X�e�e) (A.7)

�Z = m(Zu�u+ Z↵�↵ + Zq�q + Z�e�e) (A.8)

�M = I22 (Mu�u+M↵�↵ +Mq�q +M�e�e) (A.9)

where the symbols X, Z, and M with subscripts indicate aerodynamic stability deriva-

tives representing the linear or angular acceleration per motion or control variable

(speed, angle of attack, pitch rate, and control deflection). Under small variations

in angle of attack around zero, angle of attack can be expressed in terms of vertical

body speed and total speed of the aircraft as

�↵ =
�w

u⇤ (A.10)

Assuming a constant thrust (�XT = �ZT = �MT = 0) and equating inertial

forces and moment in (A.4) to (A.6) to the external forces and moment in (A.7) to

(A.9) respectively, yields

�u̇ = Xu�u+
X↵

u⇤ �w � gc✓
⇤
�✓ +X�e�e (A.11)

�ẇ = Zu�u+
Z↵

u⇤ �w + (Zq + u
⇤)�q � gs✓

⇤
�✓ + Z�e�e (A.12)

�q̇ = Mu�u+
M↵

u⇤ �w +Mq�q +M�e�e (A.13)

Since the autopilot controls altitude, it should be expressed in terms of other longi-

tudinal states as
�ḣ = s✓

⇤
�u � c✓

⇤
�w + u

⇤
�✓ (A.14)

This yields a state space representation of EOM describing longitudinal aircraft

dynamics including altitude as
2
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where the plant matrix F d is constant plant matrix that includes terms related to

trimmed flight aerodynamic coe�cients, mass and inertial properties of the aircraft,

xd is aircraft state vector, G� is input coe�cient matrix, and �c is control input

including elevator deflection command to control altitude or pitch attitude �e and

thrust change command �T . Note that the model in (A.15) includes both short and

long period (phugoid) modes of the aircraft.
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APPENDIX B

THE DRYDEN GUST MODEL
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This appendix explains the Dryden’s continuous power spectral model for ver-

tical wind gusts. It defines vertical translational velocity with a second order transfer

function Gwg parameterized by standard deviation on gust intensity �g, turbulence

length Lw and velocity of the aircraft v as [33]

Gwg(s) = �g

s
|v|3

⇡Lw
3 +

r
3|v|
⇡Lw

s

|v|2

L2
w

+
2|v|
Lw

s+ s2

. (B.1)

It also relates the vertical velocity and pitch rate of the gust with a first order transfer

function parameterized by the wingspan of the aircraft b as [33]

Gqg(s) =

s

|v|

1 +

✓
4b

⇡|v|

◆
s

. (B.2)

Using (B.1) and (B.2), the combined third-order gust dynamics can be repre-

sented with 3 states in controllable-canonical state-space form as
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ẋw2

ẋq
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where ⌘g ⇠ N (0, �2
g). The first two elements in xg correspond to vertical gust states,

and the last element is related to pitch rate. The disturbances to wind vertical velocity

and longitudinal angular velocity can be expressed as an output relation as a function

of gust states as

"
wg

qg

#
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Driving the linear and angular filters Gwg and Gqg with independent, unit variance

white noise ⌘g yields the linear vertical gust velocity wg and angular pitch rate qg,

which perturb the aircraft.
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APPENDIX C

GBAS ERROR MODELS



101

In this section, standard error models for GBAS di↵erential processing are

given based on Ground Accuracy Designator-C (GAD-C) and Airborne Accuracy

Designator-B (AAD-B). The total GBAS measurement error vector ⌫⇢ in (2.13) has

a diagonal covariance matrix

V ⇢ =

2

664

�
2(✓1)

. . .

�
2(✓n)

3

775 (C.1)

where �(✓j) is the standard deviation of the total GBAS measurement error corre-

sponding to j
th satellite, ✓ is the elevation angle, n is the total number of satellites.

� is a function of elevation angle of satellites and composed of airborne �a,

ground station �g, tropospheric �t, and ionospheric �i standard deviations [49]

�(✓) =
q
�2
a + �2

g + �
2
t + �

2
i (C.2)

where �a contains airborne receiver noise �n and multipath �m components [48]

�a =
p
�2
n + �2

m (C.3)

and �m is modeled as [49]

�m(✓) = 0.13 + 0.53e�✓/10o
. (C.4)

The residual tropospheric error for the airborne equipment �t is computed as

[49]

�t(✓) = �N h0
10�6

p
0.002 + sin2

✓
(1 � e��h/h0) (C.5)

where �N is the refractivity uncertainty transmitted by ground subsystem, h0 is the

tropospheric scale height, and �h is the height of the aircraft above the GBAS refer-

ence point.

The ionospheric error model is given as [49]

�i(✓) = Fp�ri (xa + 2⌧h va) (C.6)
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where �ri is the standard deviation for the nominal ionospheric vertical spatial gra-

dient, xa is the slant range distance between current aircraft location and the ground

station, va is the horizontal aircraft velocity, and Fp is the vertical-to-slant obliquity

factor defined as [49]

Fp =
1s

1 �
✓
Re cos✓

Re + hI

◆2
(C.7)

where hI is the ionospheric shell height.

The total ground station error is composed of the ground reference receiver

errors �g,r and the signal-in-space errors �g,s as [30]

�g(✓) =

s
�
2
g,r

M
+ �2

g,s (C.8)

where M is the number of reference station antennas.

The total ground reference receiver error including noise and multipath is

modeled as [30]

�g,r(✓) =

(
0.15 + 0.84e✓/15.5

o
, ✓ � 35o

0.24, ✓ < 35o
(C.9)

and the ground signal-in-space errors are modeled as [30]

�g,s(✓) =
p

0.042 + 0.012Fp. (C.10)
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APPENDIX D

STATISTICAL INDEPENDENCE BETWEEN CURRENT-TIME ESTIMATE

ERROR AND INNOVATIONS
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As discussed in Section 5.2, the independence between current state estimate

error and innovations in the Kalman filter-based estimator allows us to formulate the

integrity risk as in (5.26) instead of the more complicated joint probability form in

(3.55). In this section, we prove the statistical independence between the current-time

state estimate error x̃KF
k and innovation �k.

The current state estimate error x̃KF
k and the innovation vector �k are ex-

tracted from the Kalman filter-based evaluation model in (5.10) as

x̃KF
k = L

0

k�x x̃
KF
k�1 � L

0

kwk�1 + Lk ⌫⇢�k
+ Lkf

0

k (D.1)

�k = �Hk�x x̃
KF
k�1 + Hk wk�1 + ⌫⇢�k

+ f
0

k. (D.2)

Using (D.1) and (D.2), the covariance between x̃KF
k and �k is obtained as

E[x̃KF
k �

T
k ] = �L

0

k

�
�x P̂ xk�1

�T
x + W k�1

�
H

T
k + LkV ⇢�k

. (D.3)

Recalling that P xk = �x P̂ xk�1
�T

x +W k�1 from (3.9) and L
0

k = I �LkHk from (5.5),

and substituting them into (D.3) gives

E[x̃KF
k �

T
k ] =

�
LkHk � I

�
P xk H

T
k + LkV ⇢�k

. (D.4)

Substituting Lk = P̂ xkH
T
k V

�1
⇢�k

from (3.7) into (D.4) gives

E[x̃KF
k �

T
k ] =

�
P̂ xkH

T
k V

�1
⇢�k

Hk � I
�
P xk H

T
k + P̂ xkH

T
k . (D.5)

Re-arranging (3.8) gives

H
T
k V

�1
⇢�k

Hk = P̂
�1

xk
� P

�1
xk
. (D.6)

Substituting (D.6) into (D.5) gives

E[x̃KF
k �

T
k ] =

⇥
P̂ xk(P̂

�1

xk
� P

�1
xk
) � I

⇤
P xk H

T
k + P̂ xk H

T
k

= �P̂
�1

xk
H

T
k + P̂

�1

xk
H

T
k = 0.

(D.7)

Eq. (D.7) proves that x̃KF
k and �k are statistically independent.
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APPENDIX E

CLOSED-LOOP RELATION BETWEEN THE CONTROL INPUT AND IMU

MEASUREMENT
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This section provides the coe�cients in the control input vector �k and the

IMU measurement vector ũk expressions in (5.17) and (5.18), respectively. These

two expressions relate �k and ũk in the closed loop evaluation model described in

Fig. 5.1. The control input �k is written in terms of the state estimate x̂ and the

IMU measurement ũk in (5.14) as

�ck = �
�
Kx � KqT qT b

�
| {z }

K
0
x

x̂k � KqT q| {z }
K ũ

ũk (E.1)

and the IMUmeasurement is written in terms of the true INS state x, aircraft dynamic

state xd, control input �ck , and INS process noise wk in (5.16) as

ũk = T u

�
F dxdk + G� �ck

�
+ T bx + T ⌫wk. (E.2)

Solving the coupled equations (E.1) and (E.2) for �k and ũk yields

ũk = Uxxk + U x̃x̃k + U dxdk + Uwwk

�k =�xxk +�x̃x̃k +�dxdk +�wwk
(E.3)

where the coe�cients are

Ux =
�
I + T uG�K ũ

��1�
T b � T uG�K

0
x

�

U x̃ = �
�
I + T uG�K ũ

��1
T uG�K

0
x

U d =
�
I + T uG�K ũ

��1
T uF d

Uw =
�
I + T uG�K ũ

��1
T ⌫

(E.4)

and

�x = �
�
I + K ũT uG�

��1�
K

0
x + K ũT b

�

�x̃ = �
�
I + K ũT uG�

��1
K

0
x

�d = �
�
I + K ũT uG�

��1
K ũT uF d

�w = �
�
I + K ũT uG�

��1
K ũT ⌫ .

(E.5)
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APPENDIX F

SIMULATION DATA
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This appendix gives the numerical model input parameters utilized in obtain-

ing the simulation results.

Table F.1. Comparison of Di↵erent Grade IMU Error Specifications [6]

Parameter Navigation Grade
Tactical Grade

Unit
High End Low End

Gyro angle random walk 0.001 0.07 0.15 deg/
p

h

Gyro bias error 0.01 0.5 10 deg/h

Gyro time constant 3600 3600 3600 s

Accelerometer white noise 10
�5g 3 ⇥ 10

�4g 5 ⇥ 10
�3g m/s

2

Accelerometer bias error 10
�5g 3 ⇥ 10

�4g 5 ⇥ 10
�3g m/s

2

Accelerometer bias time constant 3600 3600 3600 s

Table F.2. GNSS Error Specifications [6, 32]

Parameter Value Unit

Standalone residual errors and thermal noise 3 m

SD Carrier phase multipath noise 1 cm

SD Code phase multipath noise 30 cm

SD Carrier phase thermal noise 0.2 cm

SD Code phase thermal noise 50 cm

Multipath time constant 100 s

Table F.3. GBAS Error Model Parameters [48]

Parameter Value Unit

Carrier-smoothing time constant 100 s

Radius of Earth 6378.1363 km

Ionospheric shell height 350 km

Tropospheric scale height 7.3 km

Ionospheric vertical gradient 4 mm/km

Airborne receiver noise (AAD-B) 15 cm

Number of ground antenna 4 -

Number of satellites in view 6 -

Satellite elevations 31
o  ✓  63

o
deg
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Table F.4. Longitudinal Flight Conditions [14]

Flight Conditions Value Unit

Aircraft Speed 131 knots

Flight Path Angle �5 deg

Air Density 11.85 kg/m
3

Altitude 500 m

Table F.5. B747 Aircraft Properties [14]

Properties Value Unit

Mass 289, 550 kg

Moment of Inertia 44.87 ⇥ 10
6

kg.m
2

Wing Span 59.74 m

Wing Chord 8.32 m

Wing Area 510.96 m
2

Table F.6. Aerodynamic Coe�cients and their Derivatives [14]

Drag Lift Pitch

Coe�cient 0.266 �0.0174 0

AoA Derivative 0.084 4.24 �0.629

Speed Derivative �0.0064 �0.084 �0.0928

Pitch Rate Derivative 0 �0.0928 �20.5
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