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ABSTRACT 

This paper investigates the influence of the autocorrelations of monitor test statistics over time and their cross-correlations 
across monitors on false alert and missed detection probabilities.  General analysis methods are developed for the two 
problems.  It is shown that cross-correlation across pairs of monitors directly influences the joint probability of missed 
detection, PMD.  This is in contrast to the effect of time auto-correlation, which primarily influences the probability of false 
alert, PFA.  The new methods are applied to the example problem of Ground Based Augmentation System (GBAS) 
ionospheric front monitoring.   

INTRODUCTION 

In this paper we analyze the effects on false alert and missed detection probabilities due to the autocorrelation of monitor test 
statistics over time and their cross-correlation across monitors.  There has been some relevant earlier work on the effects of 
time correlation on false alert probabilities, as will be discussed below, but the scope was limited and the specific results were 



not directly applicable any particular monitor.  There has been no relevant prior work on the question of test statistic cross-
correlation between monitors.  The purpose of this paper is to fill these knowledge gaps. 

In 2001, Brenner [1] used a direct Monte Carlo approach to demonstrate that the probability of false alert (PFA) was higher 
than previously expected when a test statistic was time correlated and tested repeatedly over 15 sec, which is the specified 
GBAS continuity interval.  Prior to Brenner’s work, it was widely assumed that if the test statistic correlation time was large 
compared to the 15 sec interval, then the resulting PFA would be nearly the same as if one independent test was executed over 
the interval.  The results in [1] showed that this is not true, and in fact that PFA can be much higher.  However, the 
quantitative results of this early work were limited to the output of a first order filter with 100 sec time constant with input 
white noise, so they are not directly applicable any monitors, including GBAS ionospheric monitors of specific interest in the 
second half of this paper.   

In 2003, Shively [2] confirmed Brenner’s earlier results and provided an analytical upper bound on PFA based on a linearized 
solution for the threshold-crossing problem in Papoulis [3].   Shively validated his analytical bound at several discrete points 
by direct Monte Carlo simulation and by comparison with the point results available in [1].  Shively’s results were also 
limited to the output of a first order filter with a 100 sec time constant with input white noise. 

In 2012, Rife [4] introduced a direct simulation approach to propagate the probability density function of a time-correlated 
test statistic over time.  He showed that the existence of the constant threshold causes the distribution to quickly become non-
Gaussian, even if the initial error distribution was Gaussian.  The method is rigorous, but it has practical drawbacks:  (1) the 
direct simulation is approximate, because the monitor density function needs to be discretized for time propagation, and (2) it 
is far too slow to use in a general analysis that may consider many different input stochastic models.  

Concerning the influence of autocorrelation of test statistics over time, in this this paper, we  

• generalize and tighten Shively’s analytical PFA bound, and correct a theoretical error in [2],  

• develop new theory to quantify the impacts of autocorrelation of test statistics on PFA and PMD, 

• validate the new analytical methods using Monte Carlo simulations, and 

• provide quantitative results for GBAS ionospheric front monitors. 

In addition, we provide a new, general theory to quantify the influence on joint PMD of cross-correlations of the outputs of 
any pair of monitors.   

Monte Carlo simulations are used to directly validate the theory.  Then the new analytical tools are used to generate useful 
quantitative results for GBAS ionospheric front monitors.  

 

TEST STATISTIC AUTO-CORRELATION OVER TIME 

To compute false alert probabilities for colored noise processes we use two methods: 

1. a vectorized Monte Carlo method, which is more time-efficient than the direct simulations employed in [1], and  

2. a theoretical approach to establish an upper bound on PFA, which is a generalized version of the bound used in [2] . 

While the first method (to be described shortly) is efficient by Monte Carlo standards, it is still far more time consuming than 
the theoretical method.  Therefore the Monte Carlo method was mainly used to validate the theory, which, in turn, was used 
to generate most of the results in this paper.  The theoretical bound, which is derived in Appendix A, is given by the two 
equations below: 

𝑃!" 𝑛, 𝑘!"   =   1 − 1 −  2Φ −𝑘!"  1 −
𝑃! 𝑘!"

1 −  2Φ −𝑘!"
 
!!!

                                            (1) 
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                                                                     (2) 

and 

• Φ ∎  is the cumulative distribution function (CDF) of the standard normal distribution 

• 𝑘!" is the normalized monitor threshold 

• ∆𝑡 is the sample interval 

• 𝑛 is the number of monitor tests in the exposure interval 

• 𝑅!!(∎) is the autocorrelation function of the monitor output. 

Shively [2] used a method similar to the one in Appendix A to derive a different analytical expression for PFA.  While that 
result was sufficient for the problem investigated in [2], namely the output of a first order 100-second filter with input white 
noise, it is not correct in the general case.  It produces erroneous results for noise processes with long time constants – for 
example, if the same first order filter is fed by colored noise (e.g., due to multipath) rather than white noise. Equations (1) 
and (2) above provide correct results in all cases.  This was verified by direct comparison with Monte Carlo simulation 
results, as discussed below. 

The vectorized Monte Carlo method is outlined in the flow chart in Figure 1.  In the following analysis we use 15 sec 
continuity exposure window (applicable to GBAS), and a sample interval of ∆𝑡 = 0.5 sec, leading to 𝑛 = 30.  For simplicity, 
this figure shows how a single 30×1 white noise vector is processed.  In actual implementation, 𝑚 noise vectors can be 
processed simultaneously by inputting a 30×𝑚 matrix instead.   Figure 2 shows PFA as a function of normalized threshold 
𝑘!" for a first order filter, with 100 sec time constant, subject to input white noise.  This is the same case evaluated in 
references [1] and [2].  Theoretical results using equations (1) and (2) and vectorized Monte Carlo results are shown.  Also 
included are three point results from [2], one theoretical and two from Monte Carlo simulation.  The purpose of the figure is 
to help validate equations (1) and (2) by demonstrating the close correspondence between all of the results. The dashed line 
in this figure also shows the theoretically expected PFA vs. 𝑘!" under the assumption that there is only one independent test 
during the 15 sec exposure interval.  It is obvious that the assumption is not valid—even though the filter time constant is 
much larger than 15 sec—and that its use would result in a significant underestimation of the actual false alert probability.  
The results also show that the vectorized Monte Carlo results match the point results from [2], and that the theoretical result 
upper bounds all of the Monte Carlo results. 

Figure 3 shows the corresponding curves for the first order filter output given a colored multipath input:  a first-order Gauss-
Markov process with time constant 𝜏!" = 20 sec.   In this case, the theoretical result bounds the Monte Carlo result much 
more tightly, and the false alert probabilities are much closer to the single-sample curve than the previous white noise results 
(also shown in Figure 3).  It is clear that the time constant of the input to the filter has a very strong influence on the false 
alert probability. 

 

Figure 1.  Flow Chart of the Vectorized Monte Carlo Process 
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Figure 2:  Comparison of New and Existing First Order Filter PFA Results 

 

 

 

Figure 3: PFA for First Order Filter with Multipath 𝜏!" = 20 sec 
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Appendix A also provides the derivation of the following missed detection probability upper bound: 

𝑃!" 𝑛, 𝑘!" =  Φ −𝑘!"   1 −
𝑃! 𝑘!"
2Φ −𝑘!"

 
!!!

                                                         (3) 

where 𝑘!" is the normalized integrity buffer.  This bound was also validated by direct comparison with the results of 
vectorized Monte Carlo simulations (not shown here). 

Note that 𝑃!" 1, 𝑘!"  and 𝑃!" 1, 𝑘!"  represent the FA and MD probabilities for a single monitor test.  The effective 
numbers of independent samples in a given exposure time 𝑛Δ𝑡 for FA and MD are then, respectively,  

    𝑛!" 𝑛, 𝑘!" =  log[1 − 𝑃!" 𝑛, 𝑘!" ] log[1 − 𝑃!" 1, 𝑘!" ]     (4) 

                    𝑛!"(𝑛, 𝑘!") =  log𝑃!" 𝑛, 𝑘!" log𝑃!" 1, 𝑘!" .    (5) 

TEST STATISTIC CROSS-CORRELATION ACROSS MONITORS 

Evaluating the impact of test statistic cross-correlations between monitors involves additional considerations and requires 
different methods of analysis than the time autocorrelation case.  On one extreme, for pairs of monitors that use mutually 
independent measurements, there would be no cross-correlation at all.  Of course, not all cases are this easy.  It is not 
uncommon that a given pair of monitors may use some, but not all, of the same measurements—and may use them differently 
in an attempt to detect the same fault.  (Several examples relevant to GBAS will be given later in this paper.)  The analysis of 
the influence of correlations between input measurements on the joint PMD for two monitors is difficult, but it is necessary to 
ensure that the resulting integrity risk is properly overbounded.  In Appendix B, we develop a general theory to quantify the 
impact of cross-correlations of the outputs of any pair of monitors.   

EXAMPLE APPLICATION OF THE THEORY:  GBAS IONOSPHERIC FRONT MONITORS 

Here we will leverage the methods developed above (and in the Appendices) to produce quantitative results concerning time 
and monitor independence for the GBAS pseudorange Dual Solution Ionospheric Gradient Monitor (DSIGMA) and the 
airborne and ground-based Code Carrier Divergence (CCD) monitors.  In Appendix C, it is shown that the transfer functions 
for the DSIGMA and CCD monitors are 

𝑌!"#$ 𝑠  =  
𝑠

𝜏!𝑠 + 1 𝜏!𝑠 + 1 𝜏!"𝑠 + 1
  𝑁!"#$ 𝑠                                                     (6)	

	
𝑌!!" 𝑠   =   

𝑠
𝜏!!"𝑠 + 1 ! 𝜏!"𝑠 + 1

  𝑁!!" 𝑠                                                           (7)	

where, 

• 𝑁!!" and  𝑁!"#$ are white noise inputs,  

• 𝜏!" is the time constant of errors entering the monitor (due to multipath), 

• 𝜏! and 𝜏! are the DSIGMA time constants:  100 and 30 sec, respectively, 



• 𝜏!!! is the CCD monitor time constant:  100 and 30 sec, respectively, for the air and ground versions of the monitor. 

For comparison we can also write the first order filter transfer function that corresponds to the “monitors” used in [1] and [2] 
and to generate the results in Figures 2 and 3.  Here we generalize to include the effects of input colored noise:   

𝑌! 𝑠  =  
1

𝜏!𝑠 + 1 𝜏!"𝑠 + 1
 𝑁! 𝑠                                                                          (8)	

Note that equations (6) through (8) collapse to the case of a pure white noise input if we choose 𝜏!" = 0. 

Figure 4 shows the frequency responses (magnitudes only) of the individual ionospheric monitors.  As shown in Appendix C 
the input to each of the three monitor models is raw GPS code-minus-carrier, which is heavily dominated by raw code phase 
error.  It is significant that the monitors are all band-pass filters, meaning that monitor inputs at either extremely high or low 
frequencies will be rejected.  This frequency selectivity suggests that accurate stochastic modelling of input error will be 
needed to obtain meaningful output results.  Figures 5 through 7, respectively, show the corresponding curves for the first 
order filter and three IGM monitors given colored multipath inputs with an example time constant 𝜏!" = 20 sec.  

In Figures 8 through 10, we also present the results (for DSIGMA, airborne CCD, and ground CCD, respectively) in terms of 
the effective number of independent monitor tests during the 15 sec exposure interval – in this case for 𝜏!" ranging from 0 
(white) to 100 sec.  It is evident that the effective number of independent sample varies strongly with 𝜏!".  This is consistent 
with the expectations stated above based on the frequency response characteristics of the monitors.  It is important to 
remember that 𝜏!" is the time constant of the raw (unsmoothed) pseudorange errors entering the monitor.  (Carrier phase 
errors are negligible in comparison for all the monitors considered here.) There also is a somewhat weaker, but non-
negligible, dependence on the normalized threshold 𝑘!". 

 

 

Figure 4:  Monitor Frequency Responses 
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Figure 5: PFA for CCD-Air Monitor with Multipath 𝜏!" = 20 sec 

 

 

Figure 6: PFA for DSIGMA Monitor with Multipath 𝜏!" = 20 sec 
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Figure 7: PFA for CCD-Ground Monitor with Multipath 𝜏!" = 20 sec 

 

GBAS Multipath and Noise Autocorrelation Models  

The Boeing Company and the Thales Group provided, respectively, the necessary airborne and ground data to create 
autocorrelation models for multipath and receiver noise. Raw code-minus-carrier autocorrelation data, with ionospheric 
effects removed, were used to generate the autocorrelation models described below.  More detail on the data used to generate 
these models is provided in Appendix D.  

Table 1 additionally shows the 5th, 50th (median), and 95th percentile time constants obtained from the Boeing and Thales 
experimental data.  Given the finite amount of data available, it was not possible to reliably estimate time constants below the 
5th and above the 95th percentiles.  The especially large airborne time constant at the 95th percentile is caused by antenna 
group delay; this effect must in included in the airborne error model because it is an input error source which, like multipath 
and receiver noise, will influence the airborne monitor outputs. 

 

Table 1:  Monitor input autocorrelation model parameters 
	

 τ    time constant (sec) 
Percentile WMD WFA Boeing Air Thales Ground 

(1) < 5 0 0.05 0 0 
(2) 5 0.05 0.45 7 6 
(3) 50 0.45 0.45 14 7 
(4) 95 0.50 0.05 170 13 
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Figure 8: Effective Number of Independent Samples in 15 sec for DSIGMA Monitor 

 

 

Figure 9: Effective Number of Independent Samples in 15 sec for CCD-Air Monitor 
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Figure 10: Effective Number of Independent Samples in 15 sec for CCD-Ground Monitor 

The monitor input autocorrelation models for combined multipath and noise are: 

𝑅!,!"# 𝑡, 𝑖  =  𝜎!"#!  exp − 𝑡  / 𝜏!"#(𝑖)       𝑖 = 1… 4           (9) 

  𝑅!,!"# 𝑡, 𝑖  =  𝜎!"#!  exp − 𝑡  / 𝜏!"#(𝑖)       𝑖 = 1… 4    (10) 

where the air and ground multipath and noise errors are mutually independent, and the index i refers to the specific 
autocorrelation model in row (𝑖) of Table 1.  From the Boeing and Thales data in Appendix D, we also find that 𝜎!"# =
 0.40 m and 𝜎!"# =  0.15 m are good approximations for the error standard deviations, regardless of satellite elevation. 

The corresponding individual monitor output autocorrelation functions, 𝑅!,!"#$%&(𝑡, 𝑖), 𝑅!,!!"!!(𝑡, 𝑖), and 𝑅!,!!"!!(𝑡, 𝑖), 
are then obtained using the monitor transfer functions in equations (6) and (7).  

GBAS Nominal Ionospheric Error Models  

The ground and air monitors will also be affected by nominal ionospheric divergence, which for an antenna at location x and 
time t is 

𝑑𝐼(𝑥, 𝑡)
𝑑𝑡

=  
𝜕𝐼(𝑥, 𝑡)
𝜕𝑡

+  
𝜕𝐼(𝑥, 𝑡)
𝜕𝑥

𝑑𝑥
𝑑𝑡

                                                                        (11) 

Because we are concerned with nominal ionospheric effects, we assume that the derivatives above are constant over our 
spatial and temporal regions of interest.  (Note that this does not mean that ionospheric errors are constant spatially or 
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temporally, just their derivatives.)  Let 𝑣! be the velocity of the nominal ionosphere relative to an observer fixed in reference 
frame F.  In this case we have: 

𝐼!  =   
𝜕𝐼
𝜕𝑡

 +  𝑣!  
𝜕𝐼
𝜕𝑥

                                                                                        (12) 

DSIGMA Monitor 

The difference between nominal ionospheric divergence at the air and ground is 

∆𝑑 ∶=  𝑑! − 𝑑!  ∶=  2 𝐼! −  𝐼!                                                                          (13) 

                 =  2 𝑣! − 𝑣!
𝜕𝐼
𝜕𝑥

                    

Note that 𝑣! − 𝑣! is the velocity of the aircraft relative to the ground.  For simplicity, we are free to assign 𝑣! =  0.   In terms 
of standard deviations, we may then write 

                                 𝜎!" = 2 𝑣! 𝜎!"#  𝐹(𝜃)      (14) 

where 𝜎!"#  is the standard deviation of the vertical ionospheric gradient and 𝐹(𝜃) is the obliquity factor for a satellite at 
elevation 𝜃.   

The resulting output response of the DSIGMA monitor is scaled by the difference in smoothing filter time constants: 
 𝜏! − 𝜏!  =  100 sec  −  30 sec  =  70 sec.  

𝜎!,!"#$%& = 𝜎!"  (𝜏! − 𝜏!) = 2 𝑣! 𝜎!"#  𝐹(𝜃) (𝜏! − 𝜏!)                                                  (15) 

where 𝜎!,!"#$%& is the standard deviation of the nominal ionosphere contribution to the DSIGMA monitor test statistic.  The 
aircraft velocity, 𝑣!, during final approach varies between 135 and 290 knots [2].  We consider the following range of values 
for 𝜎!"# ,𝐹(𝜃), and 𝑣!:   

High:       𝜎!"# = 4 mm/km,       𝐹 5° ≈ 3,         𝑣! = 290  knt 
Low:        𝜎!"# = 1 mm/km,       𝐹 90° = 1,      𝑣! = 135  knt 

This results in a range of possible values for 𝜎!,!"!"#$: 

0.01m  <  𝜎!,!"#$%&  <  0.25 m. 

CCD-Air and Ground Monitors 

For the CCD-Ground monitor the nominal input divergence is simply 

𝑑! = 2 𝐼! = 2
𝜕𝐼
𝜕𝑡

                                                                                            (16)  

The monitor measures divergence directly so 𝜎!,!!"!!  =   𝜎!!.  Based on experimental data collected in CONUS, reference 
[3] recommends the use of 𝜎!! = 4 mm/s.  Therefore, in this analysis, for the CCD-Ground monitor we use 



𝜎!,!!"!!  =  4 mm/s. 

The nominal ionospheric divergence seen by the CCD-Air monitor is 

𝑑! = 2 𝐼!  =  2
𝜕𝐼
𝜕𝑡

 +  𝑣!  
𝜕𝐼
𝜕𝑥

=  𝑑! + 2 𝑣!  
𝜕𝐼
𝜕𝑥

                                                              (17)	

which leads to the following nominal ionospheric contribution (standard deviation) to the monitor test statistic   

𝜎!,!!"!!  =   𝜎!!  =   𝜎!!
! + 4 𝑣!! 𝐹 𝜃 !𝜎!"#!                                                            (18) 

Considering again the same range of values for 𝜎!"# , 𝐹(𝜃), and 𝑣! results in a range of possible values for 𝜎!,!!"!!: 

4 mm/s   <    𝜎!,!!"!!   <    5.4 mm/s.  

Nominal Ionosphere Autocorrelation Model 

Because we assume that the nominal ionospheric derivatives are constant over our spatial and temporal regions of interest, 
we have the following autocorrelation function for the monitor output due to nominal ionospheric effects: 

𝑅!,!"# 𝑡 =  𝜎!,!"#!      ∀     𝑡 ∈ [0,𝑇]                                                                 (19) 

where [0,𝑇] is our time interval of interest, and ‘MON’ can be any of the three monitors above. 

Composite Monitor Output Autocorrelation Model 

The nominal ionospheric and multipath/noise contributions to the monitor outputs are independent.  Therefore the 
corresponding output autocorrelation functions are: 

𝑅!"#$%& 𝑡, 𝑖  =   𝑅!,!"#$%& 𝑡, 𝑖  +   𝑅!,!"#$%& 𝑡  

𝑅!!"!! 𝑡, 𝑖  =   𝑅!,!!"!! 𝑡, 𝑖  +   𝑅!,!!"!! 𝑡                                                        (20) 

𝑅!!"!! 𝑡, 𝑖  =   𝑅!,!!"!! 𝑡, 𝑖  +   𝑅!,!!"!! 𝑡  

Results:  GBAS Ionospheric Front Monitor Test Statistic Auto-Correlation Over Time 

To estimate 𝑃!" and 𝑃!" we use a weighted composite of the four input multipath and noise models in Table 1: 

𝑃!" 𝑛, 𝑘!" = 𝑃!" 𝑛, 𝑖, 𝑘!"  𝑊!"
!
!!! (𝑖)                                                              (21) 



𝑃!"(𝑛, 𝑘!") = 𝑃!" 𝑛, 𝑖, 𝑘!"  𝑊!"
!
!!! (𝑖)                                                          (22) 

where 𝑊!"(𝑖) and 𝑊!"(𝑖) are the weighting factors assigned to the specific autocorrelation models in row (𝑖) of Table 1, 
and for a given autocorrelation model 𝑖 , 𝑃!" 𝑛, 𝑖, 𝑘!"  and 𝑃!" 𝑛, 𝑖, 𝑘!"  are computed using equations (1) and (3), 
respectively.  To help obtain upper bound estimates of 𝑃!" and 𝑃!" the weighting factors were selected to emphasize the 
lower time constants for 𝑃!" and higher time constants for 𝑃!". 

Based on the DSIGMA and CCD-Air monitor 𝑃!" results, it is safest to assume low-nominal ionospheric conditions, 
corresponding to scenarios where multipath and noise have increased influence.  These are the blue curves in Figures 11 and 
12.  For the CCD-Ground monitor in Figure 13 there is only one nominal ionospheric model, so there is only one curve.  The 
CCD-Ground monitor has a lower filter time constant than CCD-Air, and the input multipath contributions also have lower 
time constants on the ground than in the air.  For these reasons, the CCD-Ground monitor has more (effectively) independent 
samples during a 15 sec continuity interval.   However, both of these monitors are much more heavily influenced by nominal 
ionospheric effects than DSIGMA, which leads to an even larger number of independent samples (for DSIGMA) than for 
either of the other two monitors. 

For a typical normalized threshold 𝑘!" = 5.5 and a 15 sec continuity interval, we can safely, and with margin, assume 5 
independent samples for DSIGMA, 2 for CCD-Air, and 3 for CCD-Ground. 

 

 

Figure 11: Effective Number of 𝑃!" Independent Samples for DSIGMA Monitor 
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Figure 12: Effective Number of 𝑃!" Independent Samples for CCD-Air Monitor 

 

 

 

Figure 13: Effective Number of 𝑃!" Independent Samples for CCD-Ground Monitor 

The DSIGMA, CCD-Air, and CCD-Ground 𝑃!" results, shown in Figures 14 through 17, indicate that more than one 
independent sample can only be assumed if the ionospheric front is nearly static from the monitor’s point of view.  This is 
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especially true for CCD-Air and -Ground, where the results suggest that it is safest to assume a single monitor sample, even 
for fronts that appear static to the monitors for longer than 10 minutes.  However, two independent samples can be assumed 
for the DSIGMA monitor for ionosphere fronts that appear static to the DSIGMA monitor for a period of at least 5 minutes. 
 

Results:  GBAS Ionospheric Front Monitor Test Statistic Cross-Correlation Between Monitors 

The new results are shown in Figures 17 through 19.  Figure 17 shows the cross-correlation impact between the CCD-Air and 
DSIGMA monitors.  The CCD-Air monitor is dominated by nominal ionospheric divergence, whereas the DSIGMA monitor 
mainly by multipath and noise.  However both monitors are additionally influenced by nominal ionospheric gradients.  For 
the low-level nominal gradient the monitors are essentially decorrelated, but at the high nominal gradient limit there is 
substantial correlation.  Still, even in the latter case, an order of magnitude reduction in 𝑃!" exists relative to either monitor 
alone, at least for 𝑘!"  ≥ 3.5. 

Figure 18 shows the cross-correlation impact between the CCD-Ground and DSIGMA monitors.  This case is the same as the 
previous one, except that the CCD-Ground monitor is not affected by nominal ionospheric gradients.  The existence of a 
higher ionospheric gradient affects only the DSIGMA monitor in this case, causing even further decorrelation between the 
two monitors.  The 𝑃!" results in the Figure 18 show that these two monitors are essentially independent. 

The correlation between the CCD-Ground and Air monitors is much more significant, because both monitors are heavily 
dominated by nominal ionospheric divergence.  The results in the Figure 19 clearly indicate that 𝑃!" credit can only be taken 
for one of these monitors. 

 

  

Figure 14: Effective Number of 𝑃!" Independent Samples for DSIGMA Monitor 
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Figure 15: Effective Number of 𝑃!" Independent Samples for CCD-Air Monitor 

 

 

 

Figure 16: Effective Number of 𝑃!" Independent Samples for CCD-Ground Monitor 
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Figure 17: Joint 𝑃!" for DSIGMA and CCD-Air 

 

 

Figure 18: Joint 𝑃!" for DSIGMA and CCD-Ground 
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Figure 19: Joint 𝑃!" for CCD-Air and CCD-Ground 

 

A Note on the GBAS Ground-Based Ionospheric Gradient Monitor (IGM) 

Any discussion of GBAS ionospheric monitors would be incomplete without mention of ground-based Ionospheric Gradient 
Monitors (IGM), like those described in [5] and [6].  These use input carrier phase measurements, so the multipath and noise 
errors affecting them will be essentially independent from those affecting the CCD-Air, CCD-Ground and DSIGMA 
monitors—because the multipath and noise in the latter monitors are dominated by code phase errors.  In addition, nominal 
ionospheric gradient effects on the IGM, which could otherwise cause some correlation with CCD-Air and DSIGMA test 
statistics, are heavily dominated by nominal tropospheric turbulence [5].  Tropospheric turbulence also overshadows the 
effects of the carrier phase multipath and noise.  For all these reasons, we may safely assert that the IGM output will be 
statistically independent from the outputs of the other three monitors. 

However, understanding IGM test statistic time correlation requires knowledge and data available today only to ground 
system providers, so no analysis is possible.  Therefore, without specific design details, it is recommended that conservative 
assumptions be used – namely, that 

1. the maximum number of independent samples over 15 sec be assumed the for 𝑃!"– e.g., 15 sec/Δ𝑡 samples – and 

2. the minimum number of independent samples per an approach be assumed for 𝑃!"– e.g., one independent sample 
per approach. 

 

CONCLUSION 

This paper investigated the influence of the autocorrelations of monitor test statistics over time and their cross-correlations 
across monitors on false alert (FA) and missed detection (MD) probabilities.  General analysis methods are developed for the 
two problems.  It is shown that cross-correlation across pairs of monitors directly influences the joint probability of missed 
detection, PMD.  This is in contrast to the effect of time auto-correlation, which primarily influences the probability of false 
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alert, PFA.  The new methods are applied to a specific example: Ground Based Augmentation System (GBAS) ionospheric 
front monitoring.   

Concerning the effects of auto-correlation over time on 𝑃!", it was shown that for DSIGMA and CCD-Air, it is safest to 
assume low-nominal ionospheric conditions, corresponding to scenarios where multipath and noise dominate.  The CCD-
Ground monitor has a lower filter time constant than CCD-Air, and the input multipath contributions also have lower time 
constants on the ground than in the air (due to aircraft antenna group delay).  For these reasons, the CCD-Ground monitor has 
more (effectively) independent samples during a 15 sec continuity interval.  Still, both of these monitors are much more 
heavily influenced by nominal ionospheric effects than is DSIGMA, which leads to an even larger number of independent 
samples for DSIGMA than either of the other monitors.  It was shown that for a typical normalized monitor threshold of 
𝑘!" = 5.5 and a 15 sec exposure, we can safely, and with margin, assume 5 independent samples for DSIGMA, 2 for CCD-
Air, and 3 for CCD-Ground. 

The DSIGMA, CCD-Air, and CCD-Ground 𝑃!" results, showed that only one independent sample must be assumed unless 
the ionospheric front is present and nearly static, from the monitor’s point of view, for a long period of time.  This is 
especially true for CCD-Air and CCD-Ground, where the results suggest that it is safest to assume a single monitor sample 
even for fronts that appear static to the monitors for well over 10 minutes.  Two independent samples may be assumed for the 
DSIGMA monitor for ionosphere fronts that appear static to the monitor for a period of at least 5 minutes. 

New results for cross-correlation between monitors were also presented.  The CCD-Air monitor is dominated by nominal 
ionospheric divergence, whereas the DSIGMA monitor mainly by multipath and noise.  Both monitors are additionally 
influenced by nominal ionospheric gradients.  For low-level gradients the two monitors are essentially decorrelated, but there 
is substantial correlation at the high nominal gradient limit.  Still, even in the latter case, an order of magnitude reduction in 
𝑃!" exists relative to using either monitor alone.  The cross-correlation case between the CCD-Ground and DSIGMA 
monitors is similar, except that the CCD-Ground monitor is not affected by nominal ionospheric gradients.  The existence of 
a higher ionospheric gradient affects only the DSIGMA monitor in this case, causing even further decorrelation between the 
two monitors.  The 𝑃!" results showed that these two monitors are essentially independent.  In stark contrast, the CCD-
Ground and Air Monitors are highly correlated because both monitors are heavily dominated by nominal ionospheric 
divergence.  The results showed that 𝑃!" credit may only be taken for one of these monitors. 

Finally, it was concluded based on the independent dominating error sources, that the ground-based IGM output is 
statistically independent from the outputs of DSIGMA, CCD-Air, and CCD-Ground.  With regard to IGM time auto-
correlation, performance specifics may vary widely between ground system providers.  For this reason, it is recommended to 
conservatively assume the maximum number of independent samples over 15 sec for 𝑃!" and the minimum number of 
independent samples (one) per approach for 𝑃!". 
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APPENDICES 

	
Appendix A:  Derivation of Probability of Threshold Crossing 

Definitions:  

𝑁𝐶  → acronym for “No Crossing,”  
𝐶 → acronym for “Crossing” 
𝐴!  → an event: “test statistic above threshold at time index 𝑖” 
𝐵!  → an event: “test statistic below threshold at time index 𝑖” 

The probability that all 𝑛 test statistics are below the threshold is 

𝑃(𝐵!,… ,𝐵!) =  𝑃(𝐵!) 𝑃(𝐵!  | 𝐵!!!)
!

!!!

 

where 

𝑃 𝐵!   𝐵!!! =  
 𝑃(𝐵! ,𝐵!!!)

 𝑃(𝐵!!!)
 

and 

𝑃 𝐵! =  𝑃 𝐵! ,𝐵!!! + 𝑃(𝐵! ,𝐴!!!) 

which is the same as 

𝑃 𝐵! ,𝐵!!! =  𝑃(𝐵!) − 𝑃(𝐵! ,𝐴!!!) 

Combining the equations above we have 

𝑃(𝐵!,… ,𝐵!) =  𝑃(𝐵!)
 𝑃(𝐵!) − 𝑃(𝐵! ,𝐴!!!)

 𝑃(𝐵!!!)

!

!!!

 

We assume that the sensor error process is stationary over the time interval of interest, i.e., 𝑛 consecutive samples, so that  

𝑃 𝐵! =  𝑃 𝐵! =  𝑃(𝐵!!!). 

The probability of crossing a threshold at ±𝑘 is 



𝑃!(𝑘) ∶=  𝑃 𝐵! ,𝐴!!! = 𝑃(𝐴! ,𝐵!!!) =  
1
𝜋

 exp −
𝑘!

2
 acos

𝑅!"# Δ𝑡
𝑅!"# 0

 . 

The result above, which is the same as equation (2), can be derived by following Papoulis’s treatment of the level crossing 
problem in [7], and combining separate intermediate results on pages 486 and 492 of [7].  The ‘level’ here is the normalized 
threshold 𝑘.  The expression is accurate when 𝑅!"# Δ𝑡 /𝑅!"# 0  is close to 1, which is true for all of the auto-correlation 
analysis in this work.  Numerous point probability results have been verified by direct Monte Carlo simulation for all 
monitors analyzed in this work.  

Now consider the false alert case, where we have two thresholds at ±𝑘.  In this case  

𝑃!" 𝑛, 𝑘   =   1 − 𝑃 𝐵!,… ,𝐵!  =  𝑃 𝐵!  
𝑃 𝐵! − 𝑃!(𝑘)

𝑃 𝐵!
 
!!!

 

and then 

𝑃!" 𝑛, 𝑘!"   =   1 − [1 −  2Φ −𝑘!" ]   1 −
𝑃!(𝑘!")

1 −  2Φ −𝑘!"
 
!!!

 

which is the same as the false alert probability expression in equation (1). 

For the missed detection problem a fault exists, so we are concerned with crossing one threshold, either 𝑘 or − 𝑘, based on 
the sign of the fault.  We assume the probability of crossing the other threshold will be negligibly small when a fault is 
present.  Therefore, for no threshold crossing assuming a one-sided threshold 

So for a fault a constant distance 𝑑 above the threshold, the missed detection probability is 

𝑃!" 𝑛,𝑑  =  𝑃 𝐵!,… ,𝐵!  =  𝑃(𝐵!)   
𝑃(𝐵!) − 𝑃!(𝑑)/2

𝑃(𝐵!)
 
!!!

 

Considering the case where 𝑑 = 𝑘!"  

𝑃!" 𝑛, 𝑘!"  =  Φ −𝑘!"   1 −
𝑃!(𝑘!")
2Φ −𝑘!"

 
!!!

 

which is the same as the missed detection probability in equation (3).   

 

Appendix B:  Monitor Cross-Correlation Theory 

We will consider the cross correlation between a pair of arbitrary monitors defined by 

𝑌! 𝑠  =   𝑀! 𝑠  𝑈!(𝑠)	

𝑌! 𝑠  =   𝑀! 𝑠   𝑈! 𝑠 +  𝑈! 𝑠  	

where 𝑀! 𝑠  and 𝑀! 𝑠  are the transfer functions of the two monitors, and 𝑌! 𝑠  and 𝑌! 𝑠  are the respective monitor 
outputs.  The measurement error input to the first monitor is 𝑈! 𝑠 .  The second monitor also accepts input 𝑈! 𝑠 , but has an 



additional input  𝑈! 𝑠 , which is statistically independent from  𝑈! 𝑠 .  Because the inputs to the two monitors are obviously 
correlated, the outputs will, in the general case, also be correlated. 

In general, the independent input contributions 𝑈! 𝑠  and  𝑈! 𝑠  may individually be correlated over time.  We can model 
such time correlations by passing white noise inputs through error model filters:  

𝑈! 𝑠  =   𝑊! 𝑠  𝑁!(𝑠)	
U! s  =   W! s  N! s  

where 𝑊! 𝑠  and  𝑊! 𝑠  are the colored error filters for the two monitor inputs, and 𝑁! 𝑠  and  𝑁! 𝑠  are white noise 
processes with unit power spectral density.   

We can now write  

𝑌! 𝑠  =   𝑀! 𝑠  𝑁!(𝑠)	

      𝑌! 𝑠  =  𝑌!" 𝑠 +  𝑌!! 𝑠 	

  𝑌!" 𝑠 =  𝑀!" 𝑠  𝑁!(𝑠) 

   𝑌!! 𝑠 =  𝑀!! 𝑠  𝑁!(𝑠) 

where 

𝑀! 𝑠   =   𝑀! 𝑠  𝑊!(𝑠) 

𝑀!" 𝑠  =   𝑀! 𝑠  𝑊!(𝑠) 

𝑀!! 𝑠  =   𝑀! 𝑠  𝑊!(𝑠) 

We can also express the boxed equations as systems of differential equations (in time) in state space form: 

𝑥!  =  𝐹! 𝑥! +  𝐺! 𝑛! 	
𝑦! =  𝐻! 𝑥! 	

 
𝑥!"  =  𝐹!" 𝑥!" +  𝐺!" 𝑛!  
𝑦!" =  𝐻!" 𝑥!"  

 
𝑥!!  =  𝐹!! 𝑥!! +  𝐺!! 𝑛!  
𝑦!! =  𝐻!! 𝑥!!  

 
𝑦!  =   𝐻!"  𝐻!! 

𝑥!" 
𝑥!! 

 

These can be combined into a single state space system as follows: 

𝑥  =  𝐹𝑥 + 𝐺𝑛 

where 

𝑥 =  
𝑥!
𝑥!" 
𝑥!! 

,		  𝐹 =  
𝐹! 0 0
0 𝐹!" 0
0 0 𝐹!"

,		  𝐺 =  
𝐺!  0
𝐺!" 0
0 𝐺!!

,    and	  𝐻 =  𝐻! 0 0
0 𝐻!" 𝐻!! 

	



Now let us define 𝑋 and 𝑌 as the covariance matrices of vectors 𝑥 and 𝑦, respectively.  Recalling that the power spectral 
densities are both 1, the covariance propagation equation is  

𝑋  =  𝐹𝑋 + 𝑋𝐹! + 𝐺𝐺! 	

Assuming the monitor filters are in steady state with respect to the noise inputs, we have  

0 =  𝐹𝑋!! + 𝑋!!𝐹! + 𝐺𝐺! 	

This is a Lyapunov Equation, which can be solved for 𝑋!! (for example, by using the lyap function in Matlab® ).  In turn we 
can then obtain the steady state covariance matrix of the vector 𝑦,  

𝑌!! = 𝐻𝑋!!𝐻! 	

which is the covariance matrix of the joint distribution of the outputs of the two monitors 

𝑦 =
𝑦!
𝑦!  ~ 𝑁! (0,𝑌!!) 

Finally, the joint missed detection probability can be written as 

𝑃!" 𝑘!"  =  𝑃( 𝑦! > 𝑘!" ∩  𝑦! > 𝑘!")  =  𝑁! (0,𝑌!!)
!
!!"

!
!!"

 𝑑𝑦! 𝑑𝑦! 

The integral for the bivariate Gaussian distribution has no general analytic solution, so it must be evaluated numerically.  
(This can be done efficiently by using the Matlab® function mvncdf.) 

	

	
Appendix C:  Derivation of Monitor Transfer Functions 
	

Definitions: 

𝑘 is the time index 
∆𝑡 is the sample interval 
𝑁 is an integer number of samples used to define the filter gain 
𝜏 is the time constant of the smoothing filter 
𝑝 is the raw pseudorange 
𝑝 is the smoothed pseudorange 
𝜙 is the carrier phase (expressed in the same length units as p) 

	
	
DSIGMA	

The standard GBAS smoothing filter is: 

𝑝 𝑘 =
𝑁 − 1
𝑁

 𝑝 𝑘 − 1 + 𝜙 𝑘 − 𝜙 𝑘 − 1 +
1
𝑁
𝑝(𝑘) 

 

This can be expressed in continuous time form (using a backward difference approximation for time differentiation) as 



𝜏𝑝 𝑡 +  𝑝 𝑡 =  𝜏𝜙 𝑡 +  𝑝 𝑡  

where 𝜏 = 𝑁/∆𝑡.  Taking the Laplace Transform gives 

𝑃 𝑠  =   
𝜏𝑠𝛷 𝑠 + 𝑃(𝑠)

𝜏𝑠 + 1
 =   

𝜏𝑠
𝜏𝑠 + 1

𝛷 𝑠 +
1

𝜏𝑠 + 1
𝑃(𝑠)	

The DSIGMA monitor takes the difference of two such filters with different time constants: 

𝒴!"#$ 𝑠  =   
𝜏!𝑠

𝜏!𝑠 + 1
−

𝜏!𝑠
𝜏!𝑠 + 1

𝛷 𝑠 +
1

𝜏!𝑠 + 1
−

1
𝜏!𝑠 + 1

𝑃(𝑠)	

	

                                       =   
𝜏!𝑠 𝜏!𝑠 + 1 − 𝜏!𝑠 𝜏!𝑠 + 1

(𝜏!𝑠 + 1)(𝜏!𝑠 + 1)
 𝛷 𝑠 +  

(𝜏!𝑠 + 1) − (𝜏!𝑠 + 1)
(𝜏!𝑠 + 1)(𝜏!𝑠 + 1)

𝑃(𝑠)	

	

                =   
(𝜏! − 𝜏!)𝑠

(𝜏!𝑠 + 1)(𝜏!𝑠 + 1)
 𝛷 𝑠 −  

(𝜏! − 𝜏!)𝑠
(𝜏!𝑠 + 1)(𝜏!𝑠 + 1)

𝑃(𝑠)	

	

                                                                      =   
(𝜏! − 𝜏!)𝑠

(𝜏!𝑠 + 1)(𝜏!𝑠 + 1)
 𝑃 𝑠 − 𝛷 𝑠  

Under normal error conditions (no ionospheric front), 𝑃 𝑠 − 𝛷 𝑠  can be replaced by the difference in the errors between 
the two measurements, 𝐸!!! s .  This, in turn is almost completely dominated by the multipath and noise on the raw 
pseudorange 𝑃 𝑠 .  (Note that the differentiator, 𝑠, in the numerator of the transfer function eliminates the carrier phase cycle 
ambiguity.) 

If we model the raw pseudorange error as a first order Gauss Markov Random Process (GRMP), i.e., white noise passed 
though a first order filter, we have the following false output from the DSIGMA monitor: 

𝒴!"#$ 𝑠  =   
𝑠

𝜏!𝑠 + 1 𝜏!𝑠 + 1 𝜏!"𝑠 + 1
∙ (𝜏! − 𝜏!) 2𝜏!"(𝜎!! + 𝜎!!) ∙ 𝑁!"#$(𝑠) 	

where 𝑁!"#$ 𝑠  is input white noise with unit power spectral density.  When normalized by its standard deviation, the output 
of the DSIGMA monitor is 

𝑌!"#$ 𝑠  =   
𝒴!"#$ 𝑠

(𝜏! − 𝜏!) 2𝜏!"(𝜎!! + 𝜎!!)
 =  

𝑠
𝜏!𝑠 + 1 𝜏!𝑠 + 1 𝜏!"𝑠 + 1

 𝑁!"#$ 𝑠 	

	
	
CCD	

The CCD monitor differences pseudorange minus carrier over time and passes the result through two identical first order 
filters in series.  Following the methods above, the output error can be expressed in terms of the input error and the filter 
transfer function: 

𝐸!!" 𝑠  =   
𝑠

(𝜏!!"𝑠 + 1)!
𝐸!!! 𝑠  

The differentiator, 𝑠, in the numerator accounts for the time differencing of the input, and 𝜏!!" is the time constant of the 
monitor’s two filters. 



As in the DSIGMA case, we note that under normal error conditions the input error is almost entirely due to the raw 
pseudorange, which we model again as a first order GMRP.  The result is: 

𝒴!!" 𝑠 =  
𝑠

𝜏!!"𝑠 + 1 ! 𝜏!"𝑠 + 1
∙ 2𝜏!"(𝜎!! + 𝜎!!) ∙ 𝑁!!"(𝑠)	

In normalized form, the output is: 

𝑌!!" 𝑠  =  
𝒴!!" 𝑠

2𝜏!"(𝜎!! + 𝜎!!)
 =   

𝑠
𝜏!!"𝑠 + 1 ! 𝜏!"𝑠 + 1

∙ 𝑁!!"(𝑠)	

Note that the CCD monitor transfer function has the same general form as that DSIGMA transfer function, except that the 
filter time constants are different. 

	
	
Appendix D:  Ground and Airborne Experimental Data 
 
The Boeing Company and the Thales Group provided airborne and ground data to create autocorrelation models for 
multipath and receiver noise.  Raw code-minus-carrier data, with ionospheric effects removed, was used generate the 
autocorrelation models.  
 
 
Boeing 787 Aircraft Flight Data 
 
Figure 20 shows the sample means and standard deviations binned by satellite elevation.  The results suggest that it is 
reasonable to assume zero mean and standard deviation of 0.4 m for all elevations. 
	
	

	
	

Figure 20:  Airborne Mean and Standard Deviation 
 
 

Figure 21 shows a composite of autocorrelation traces of the flight data.  A number traces with long correlation times are 
clearly evident; these are caused by antenna group delay, and must be accounted for in the autocorrelation model. 



	
	

	
Figure 21:  Airborne Autocorrelation Traces 

 
 
Figure 22 consolidates the autocorrelation data into empirical cumulative distribution functions for a number of discrete lag 
times.  

	
Figure 22:  Airborne Autocorrelation Distributions at Various Lag Times 

 
 
To make subsequent time and monitor independence analyses tractable, the autocorrelation data is then further consolidated 
in Figure 23 into three models, corresponding to the 5th, 50th and 95th percentile autocorrelation functions. 
	

Autocorrela$on




	
	

Figure 23:  5th, 50th, and 95th Percentile Airborne Autocorrelation Functions 
	
Thales GBAS Ground Facility Data 
 
Figure 24 shows the sample means and standard deviations binned by satellite elevation.  The results suggest that it is 
reasonable to assume zero mean and standard deviation of 0.15 m for all elevations. 

	

	
	

Figure 24:  Ground Mean and Standard Deviation 

Figure 25 shows a composite of autocorrelation traces of the ground data.  Note that group-delay-induced long correlation 
times (present in the airborne data) do not exist here.   
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Ref number- date 
Name of  the company/ Template : 87204467-DOC-GRP-EN-002 

Standard Deviation and Mean of CMC0 

▌Multiple daily CMC data sets (6.543.178 PRN s, 1477 chunks) 

▌Unsmoothed (raw) ionofree CMC data 

▌Daily average RMS over all PRNs as grey curves 

▌Averaged over all daily data sets (Std deviation & Mean) as blue curve 



	
	

Figure 25:  Ground Autocorrelation Traces 

Figure 26 consolidates the autocorrelation data into empirical distribution functions at a number of discrete lag times.  
	
	
	

	
	

Figure 26:  Ground Autocorrelation Distributions at Various Lag Times 
 

For use in the time and monitor independence analysis, the autocorrelation data is then further consolidated in Figure 27 into 
three models, corresponding to the 5th, 50th and 95th percentile autocorrelation functions. 
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ACF of CMC0 (zoomed views) 
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Ref number- date 
Name of  the company/ Template : 87204467-DOC-GRP-EN-002 

Distribution of Autocorrelation (of ground CMC0) 

ACF < XACF 

ACF >0 

X1,ACF < ACF < X2,ACF   

ACF >0 



 

Figure 27:  5th, 50th, and 95th Percentile Ground Autocorrelation Functions 
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