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ABSTRACT
In this work, we present a fault detection, identification, exclusion, and readmission method in a multi-sensor navigation
architecture. The example multi-sensor navigation architecture used in this work comprises of different sensors coupled with an
inertial measurement unit (IMU) in individual Kalman filters (KF), where each filter separately provides its navigation solution.
These decentralized individual KF solutions are later combined to provide the resultant navigation solution using a weighted
fusion. In contrast to a centralized KF where faulty sensor measurements corrupt the navigation solution due to KF memory, the
decentralized structure allows fault(s) to be removed from the resultant navigation solution instantaneously after detection and
exclusion of the faulty filter(s). Solution separation among subsets of filters is used to detect faults and then identify the faulty
sensors or filters, after which they are excluded from the resultant navigation solution. We also provide protection levels against
faulty filters, which are identified and excluded. In order to readmit the declared faulty filters, we utilize solution separation
techniques again to design a readmission test. This readmission test also allows us to reset a faulty filter in case the fault caused
the filter navigation solution to be corrupted. We provide integrity risk and protection level formulas that account for missed
detection, and wrong readmission. We validate the developed algorithm for detection, identification, exclusion, and readmission
of faulty sensor using real sensor data set and simulated fault scenarios.



I. INTRODUCTION
Navigation using multiple sensors has been proposed and utilized previously for its advantages of providing better accuracy and
continuity through redundancy. Multi-sensor navigation architecture although beneficial also introduces additional systems that
could be prone to fault, and thus integrity monitoring of sensors is necessary if the desired accuracy needs to be achieved at all
times. Using multi-sensor integration in safety critical applications such as driver-less cars, autonomous drones etc., calls a need
for robust fault detection, exclusion and readmission method. Commonly sensor fusion of a multi-sensor navigation architecture
comprises of using a single centralized KF to combine measurements from different sensors. A big drawback of such kind of
fusion method is that once a fault occurs in one of the sensors, even after detection and exclusion of such faulty sensor from
the measurement, the effect of fault prior to exclusion still remains in the KF solution due to KF memory. To alleviate such
problems, we propose to utilize a decentralized filter architecture where each sensor has its own measurement filter such as KF,
which provide decoupled individual navigation solution. Each of these solutions is weighted according to the covariance of
the sensors and combined together to obtain snapshot resultant navigation solution. This resultant solution is memoryless, and
hence if a faulty filter is excluded after detection, the effect of fault is instantly removed from the resultant navigation solution in
the next epoch. Integrity methods using variety of tests have been proposed for fault detection and exclusion in a multi-sensor
architecture (Kerr (1987); Nikiforov (2002)). In this work, we propose a complete fault detection, identification, exclusion and
readmission method based on solution separation test. Solution separation has been widely used in aviation applications for
detecting satellite faults, and is the baseline monitoring architecture for ARAIM program (EU-U.S. Cooperation on Satellite
Navigation Working Group C - ARAIM Technical Subgroup (2016)). Solution separation is attractive because it measures the
effect of the fault on the position domain (or any specific state(s)) directly. As a result, it does not require defining a specific
temporal or spatial fault profile. This attractive feature makes the evaluation of the system integrity risk valid for any type of
fault without the need to run many simulations to cover all types of faults the system may have. Methods of fault detection and
identification have been previously developed (Zhai et al. (2018)), which we adopt and extend for the case of sensor fusion.
However, most of the referenced prior work, like in ARAIM, uses snapshot navigation solutions (least squares, for example).
In KF implementations, it is not enough to not use the faulty sensor or measurement at the time of fault detection. Since KF
has memory of past measurements, by the time the fault caused the test statistic to exceed the threshold, it may have already
corrupted the filter. Thus, removing the fault at that epoch may not be sufficient for the solution to be deemed fault free and so
we need to check for faults after each measurement update.

Figure 1: Decentralized structure for sensor fusion.

We utilize the federated filter approach as the architecture of our multi-sensor navigation (Carlson and Berarducci (1994);
Hashemipour et al. (1998); Mutambara (1998)), where each individual parallel KF (also known as federated filters) processes
a measurement from each sensor separately. These filters are later combined to form the full set resultant navigation solution.
Figure 1 illustrates this decentralized structure for sensor fusion where individual KF solutions from each sensor filter is
combined based on covariance weighting to produce a snapshot resultant solution. For detection we compare the combined full
set resultant navigation solution (namely position and velocity states) to subset solutions constructed by combining subsets of the
individual filters. A fault is detected when the difference between the resultant navigation solution and subset outputs exceeds
a threshold. The algorithm then proceeds by applying the detection step to the subsets (by forming solutions using sub-subsets)



in order to find a subset that includes the maximum number of individual filters while being consistent. This identification test
enables us to confirm that the identified filters are the faulty ones, and then exclude them from the resultant navigation output.

Once a faulty sensor is identified, it is not used in the resultant navigation solution, but the filter still continues running in the
background in a “quarantine” mode. This allows the system to readmit the filter, in a false alarm event, without losing the
information accumulated in the filter’s history. For readmission, this identified filter is still being checked in a readmission
solution separation test. A quarantined sensor is not used unless the solution separation test deems it fault free. In case the fault
causes the filter navigation solution to be corrupted for a period more than a specific threshold, the system invokes a filter reset.
This reset is implemented to identify whether the fault in the filter solution is caused by sensor fault that still exists, or due to
a latent fault that does not exist anymore, but due to filter corruption when the fault was present. In this work, we also provide
a formula for evaluating the integrity risk and protection levels due to wrong readmission in this logic. We also present the
complications and constraints of this system in detecting multiple simultaneous faulty sensors or filters. Section II details the
fault detection, identification and exclusion method, and in section III we introduce the filter reset and readmission algorithm.
In section IV we explain the integrity risk and method of protection level computation pertaining to detection, identification,
and wrong readmission. The results using real measurements from sensors with simulated faults are shown in section V. Finally,
the appendix at the end provides all the sensor specifications.

II. FAULT DETECTION, IDENTIFICATION AND EXCLUSION
Due to the nature of solution separation tests being utilized for fault detection, identification and readmission, we need enough
redundant filters to detect multiple faulty filters and eventually readmit them once faults no longer exist. This is known as
multiple fault hypothesis testing. The decision to test the hypothesis of multiple filters being faulty at any instant of time is given
by the prior fault probabilities. Suppose sensor A, B, and C all have independent prior fault probability of 10−6 , and thus fault
probabilities of single, dual and three filters to be at fault in any time instance is 10−6,10−12 and 10−18. A user might opt to
not check for hypothesis that three filters can be at fault at any given instance of time since the probability for that hypothesis to
be true is negligible. For testing multiple fault hypothesis using solution separation in conventional systems, the more sensors
are available to the user, the higher the computation load will be due to running multiple parallel filters. For example, consider
a case where the system uses 5 sensors. If all subsets are to be considered for fault detection, including multiple sensor faults,
the number of subset solutions that need to be formed are C(5,0) (all sensors) + C(5,1) (for 1 sensor fault subsets) + C(5,2)
(for 2 sensors fault subsets) + C(5,3) (for 3 sensors fault subsets) + C(5,4) (for 4 sensors fault subsets) = 31, where, C is the
combination operator.

In principle, all these computations would need to be executed at each measurement epoch. However, unlike central filter
implementations where 31 filters need to be running simultaneously, using federated filter approach, only 5 KF are used (one for
each sensor), and the 31 required solution combinations is formed using individual filter process. Thus, the computation load
is expected to be orders of magnitude less than running 31 parallel filters. If any of these 31 solution separation tests triggers
an alarm, it is an indication that one (or multiple) filters are faulty. However, the fault source cannot be known reliably by only
considering what tests triggered the alarm and we need further tests for identification. For identification if n-fault hypothesis
needs to be tested, then in general we need (2n+1) filters to reliably identify faults. In other words, if we have total of m filters
then we can identify maximum of ((m−1)/2) fault hypothesis. Thus, for 5 filters we can identify a maximum 2 simultaneous
fault hypothesis. For our case we consider total number of filters as 5 and a maximum of dual fault hypothesis. The detection
process first tests for maximum fault hypothesis (here dual) and then identifies the faulty filter using single fault hypothesis.
First, the detection test is composed by comparing the weighted resultant output using all 5 sensors to a subset that is composed
of 3 sensors (since we test for hypothesis that two sensors are at fault). For example, we take full filter set [1 2 3 4 5] and compare
against [3 4 5] if we assumed [1 2] to be faulty. This leads to maximum solution separation tests of C(5,2) (for 2 sensors fault
subsets) = 10. If detection is triggered we know that there is a fault either in one of the sensors or both sensors. Also, due to the
combinations of sensors, more than one subset could trigger.

To identify the faulty filter, we start with the subset whose normalized test statistic is the maximum. This subset with 3 filters is
compared to all combinations of sub-subsets with 1 sensor i.e a self consistency solution separation check is performed for the 3
filter subset since a case could happen where two filters are faulty and one of them is in the subset. Thus, in the above example
if fault was detected for combination set of [3 4 5], we would perform consistency solution separation check by comparing [3
4 5] against [3 4], [4 5] and [3 5]. If this check fails, then we go to the next combination obtained during detection. Once
consistency check is valid, we perform solution separation of each filter of the fault hypothesis one at a time. That is, taking the
above example and comparing [1 3 4 5] against [3 4 5] and then comparing [2 3 4 5] against [3 4 5]. Since [3 4 5] has been
established as fault free, if both tests fail then we have two filters (here both [1 2]) that are faulty and if only one of them fails
then we have just one faulty filter (here either 1 or 2 based on which test failed). If none of them fails, then we take the next
combination say 3 and 4 to perform the solution separation test. Once identified we proceed to exclude this faulty filter(s) and
then wait for next measurements to apply the readmission algorithm.



III. FILTER READMISSION AND RESET
Once the faulty filter is excluded from the weighted resultant solution, it runs in the background with a readmission process
testing if in case it becomes fault free with every new incoming measurements. We again rely upon the solution separation
method to test whether a prior faulty filter is fault free. Depending on prior fault probabilities, the readmission solution separation
test subsets are chosen. For example if only one faulty filter was excluded but the fault probability of dual fault hypothesis is
significant then different cases can arise as explained below.

Case 1: Some faulty filters are yet to be excluded during readmission of faulty filters

In this case, the hypothesis is that there were originally two faulty filters out of which the first faulty filter was detected
and excluded while the second filter is faulty, but not detected yet. During this intermittent time when the second filter is
yet to be detected, the first filter passes the readmission test and is readmitted. Here there could be a case in which the yet
undetected second filter conspired against the system by prematurely readmitting the first faulty and excluded filter (hence wrong
readmission).

Case 2: All faulty filters are excluded, and readmission occurs at different time epochs

In this case, the hypothesis is that the faulty filters have been excluded but readmission of the faulty filters (that are still faulty)
happen at different times. In this case, the integrity of the system is jeopardized if a faulty filter is wrongly (or prematurely)
readmitted to the system, influencing later readmissions, and causing a further premature readmission of the other filter. Such
a scenario may happen when the wrongly readmitted filter causes the navigation solution of the assumed fault free subset to be
closer to the excluded faulty filter, and thus, causing the test statistic to not exceed the threshold. Since in the case of wrongly
readmitting a filter, causing the test statistic to be smaller, we will assume that wrongly readmitting a filter, while others are still
excluded, always increases the probability of wrong readmission of other excluded filters.

Case 3: Readmission for all faulty filters occurs at same time epoch

For this case, we implemented readmission such that it only allows a single filter to be readmitted at a time and therefore,
becomes similar to Case 2. The first filter to be readmitted would be the one which has the smaller normalized test statistic.

Given these different cases of wrong readmission, we again rely upon prior fault probabilities of sensors. Thus, regardless
of the number of filters excluded after fault we always perform readmission solution separation test based on the maximum
fault hypothesis. That is, for example if we consider dual fault hypothesis as our maximum fault hypothesis (which we used
for detection as well), we will form solution separation subsets of three given the total number of filters is five. Thus, the
readmission solution separation test becomes exactly as the one used for detection.

One of the reasons why a filter cannot be readmitted right after the fault disappearance is the memory effect of the fault on the
filter. Meaning, although the fault disappeared, its effect on the filter and state vector may linger. One way to erase the fault
from the filter’s memory is to reset it. Without filter reset, there could be cases where the filter is slow in being readmitted. For
this reason if a filter remains excluded for a predefined time the filter is being reset. For example, in the case of a dead reckoning
filter, like 2D laser, once subjected to a fault for long periods, it will not correct itself after the fault ends. Therefore, a filter
reset is useful in eliminating the effect of the latent fault.

IV. INTEGRITY RISK AND PROTECTION LEVELS
Integrity risk is defined as the probability of hazardous misleading information P(HMI), which is probability of estimate error
ε exceeding alert limit L, and can be written as,

P(HMI) = P(|ε|> L) (1)

When the monitor is testing for a fault in a filter, two mutually exclusive and exhaustive events can occur, which are: f when
fault is present, and n f when no fault is present. Using the law of total probability, we can write equation (1) as,

P(HMI) = P(|ε|> L| f )P( f )+P(|ε|> L|n f )P(n f ) (2)

Given that the navigation system has the solution separation (SS) monitor that computes a test statistic qss and threshold Tss to
detect faults, we can write equation (2) as,

P(HMISS) = P(|ε|> L,qss < Tss| f )P( f )+P(|ε|> L,qss < Tss|n f )P(n f ) (3)

The second term in equation (3) is the fault free integrity risk with fault free hypothesis H0. The first term can be expanded
for multiple fault hypothesis. Also, if an integrity budget of P(HMISS) is given, then we can substitute the alert limit L with



protection level PL. Thus, equation (3) can be written as,

P(HMISS) = P(|ε|> PL|H0)P(H0)+
m

∑
i=1

P(|ε|> PL|Hi)P(Hi)+
m

∑
j=1

m

∑
k=1

P(|ε|> PL|H j ∩Hk)P(H j ∩Hk)+ ...; j ̸= k, (4)

where, m is the total number of filters, P(Hi) is the probability of fault in sensor i. The first term in equation (4) is the fault
free integrity risk and the second and third term represent integrity risk due to single and dual fault hypotheses, respectively,
and the equation can be expanded further for multiple fault hypothesis. Recall, in this work, we restricted ourselves to dual
fault hypothesis and so we are only concerned with the first three terms of equation (4). In this work we implement the PL
computation that has been utilized by the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm (Cassel
(2017)). The idea is to determine the optimal PL based on the total integrity budget P(HMISS) instead of allocating the budget
to each hypotheses. For PL computation we use P(Hi) as 10−6. Since the readmission solution separation test is the same as
detection, the protection level computation for wrong readmission is the same as that of missed detection.

V. RESULTS AND DISCUSSION
We tested our algorithm with real data from six sensors namely IMU, GPS, odometer, barometer, 2D laser and 3D laser. A
ground vehicle equipped with all these sensors was driven along a closed loop trajectory (Figure 4) to collect data. Table 1
shows the measurement frequency for all the utilized sensors and Appendix A lists the sensor specifications. The IMU is tightly
coupled with GPS, odometer, 2D laser, barometer and 3D laser to form individual federated filters. These filters each provide
their individual navigation solution which are combined to get the resultant navigation solution.

Table 1: Measurement rate of sensors

Sensor IMU GPS Odometer 2D laser Barometer 3D laser
Frequency (Hz) 100 1 1 5 25 2

Figure 2: True trajectory of the ground vehicle used to collect sensor data.

First in order to illustrate the importance of integrity monitoring of sensors in this decentralized multi-sensor fusion, we compare
the horizontal position errors of the resultant solution with and without the solution separation monitor. Figure 3 illustrates the
horizontal position error for the resultant solution when GPS ramp fault exists. When solution separation monitor is enabled,
it detects and excludes the GPS filter from the resultant solution such that effect of GPS fault is removed. On the other hand



when no integrity monitoring is employed, the horizontal position errors of the resultant solution breach the assumed fault free
protection level.

Figure 3: Horizontal Position Errors versus Time for Weighted Resultant Solution (GPS Fault).

Figure 4: Position Fault Profile in East and North Direction for GPS Sensor.



Figure 5: Position Fault Profile in East and North Direction for 2D Laser Sensor.

To validate the performance of our integrity monitor, we show results for two test scenarios, first when a fault is injected to a
single sensor (2D laser) and second when the fault is introduced to two sensors (GPS and 2D laser). We injected position ramp
faults to the GPS and 2D laser sensors, where Figure 4 and Figure 5 illustrate the horizontal position fault profiles for these two
sensors, respectively.

Figure 6: Horizontal Position Errors versus Time for 2D Laser Filter (2D Laser Fault).

For the first scenario we introduced horizontal position fault to the 2D laser sensor as illustrated in Figure 5. Since 2D laser
is a dead reckoning type sensor, the fault introduces a bias in the filter position error which cannot be corrected by itself, thus
making the case for filter reset. Figure 6 illustrates the horizontal position error for the 2D laser filter with fault and reset after



the fault, in comparison to the fault free scenario. This fault mimics a case where the 2D laser system miscalculates the amount
the user moved due to landmark mis-association between two consecutive snapshots, for example.

Figure 7 illustrates the horizontal position error for the resultant solution for this 2D laser fault scenario in comparison to fault
free scenario. As soon as the faulty filter is identified, it is removed from the resultant solution and readmitted after 150 s when
it passes the solution separation readmission test. In contrast when the 2D laser filter is reset, the fault bias is corrected and it is
immediately readmitted to the resultant solution. It is clear from the figure that not only filter reset corrects any bias fault in the
individual filter, it allows for tighter protection level and early continuity to the navigation system.

Figure 7: Horizontal Position Errors versus Time for Weighted Resultant Solution (2D Laser Fault).

Figure 8: Horizontal Position Errors versus Time for Weighted Resultant Solution (GPS and 2D Laser Fault).



For the second scenario we introduced fault to both GPS and 2D laser with reset of 2D laser filter after fault detection. Figure 8
illustrates the horizontal position errors for the resultant solution for this scenario of two faults in comparison to fault free
scenario. First fault is injected into GPS and then into 2D laser. The GPS fault is detected and it is excluded from the resultant
solution with protection level increasing accordingly. Then 2D laser fault is also detected with exclusion of 2D laser from the
resultant solution. We observe a respective increase in protection level due to this exclusion. Once GPS fault ends and it is
deemed fault free by the solutions separation monitor, it is readmitted to the resultant solution. Similarly for 2D laser, after the
reset it is readmitted to the resultant solution. The relative weighting of the sensors for estimating the position in the resultant
solution contributes to how the faults affect the resultant solution. Although GPS is readmitted to the resultant solution, the
GPS filter memory still has residual fault in it (but less than the detection threshold). The GPS filter is weighted more than the
2D laser filter and hence the effect of GPS fault on horizontal position errors of resultant solution is seen as a bias in position
errors which is slowly converging to fault free position errors. The weighting of GPS being more that the 2D laser also affects
protection level. This is obvious in the protection levels as illustrated in the figure when the effect of GPS filter exclusion on
protection level is worse as compared to 2D laser.

VI. CONCLUSION
We proposed a decentralized multi-sensor weighted fusion architecture, where as an example individual sensors tightly-coupled
with an IMU inside a KF architecture provide individual navigation solution. The navigation solution from all these individual
filters are weighted and combined to form the resultant solution. The individual navigation solutions and their combinations
are compared to the resultant solution in a solution separation test to detect and identify faulty filters, which are then excluded
from the resultant solution. The readmission of declared faulty sensors also utilizes solution separation test with a reset option
if the filter is deemed to have been corrupted by the fault. We also evaluated the navigation solution integrity risk due to missed
detection, missed identification and wrong readmission which is then used to calculate the respective protection levels. Lastly,
we demonstrated the proposed algorithm using real sensor data with simulated faults.
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APPENDIX
A. Sensor specifications

Table 2: IMU specifications

Parameter Value Units
Velocity random walk 0.005 m/s/

√
(s)

Accelerometer bias time constant 3600 s
Accelerometer scale factor standard deviation 300 ppm

Accelerometer time constant bias standard deviation 0.01 m/s/s
Angular random walk 0.2 deg/

√
(hr)

Gyroscope bias time constant 3600 s
Gyroscope scale factor standard deviation 150 ppm

Gyroscope bias standard deviation 2 deg/hr

Table 3: Odometer specifications

Parameter Value Units
Scale factor 1.14×10−3 ppm

Table 4: Barometer specifications

Parameter Value Units
Initial height offset standard deviation 2 m

In run stability standard deviation 0.02 m
Decorrelation time 100 s

Measurement standard deviation 3 m

Table 5: 3D Laser specifications

Parameter Value Units
Measurement time accuracy 1×10−3 s

Maximum range 40 m
Horizontal field of view 6.283 rad

Vertical field of view 0.5236 rad

Table 6: 2D Laser specifications

Parameter Value Units
Measurement time accuracy 1×10−3 s

Maximum range 80 m
Range standard deviation 0.01 m

Angular resolution standard deviation 0.01 rad



Table 7: GPS specifications

Parameter Value Units
Pseudorange standard deviation 1 m
Carrier phase standard deviation 0.03 m

Receiver clock bias standard deviation 500 m
Receiver clock drift standard deviation 0.01 m/s

Receiver clock drift time constant 100 s
Pseudorange bias time constant 10 s
Carrier phase bias time constant 50 s
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