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ABSTRACT
This paper examines adverse weather impacts on the safety of LiDAR-based navigation for self-driving cars. Our prior work
leveraged LiDAR intensity metrics to quantify and reduce incorrect feature extraction risk between pre-defined landmarks
equipped with strong retro-reflectors and obstacles under a daytime scenario. However, LiDAR intensity is affected by weather
conditions, showing correlations to water droplet density and solar radiation. We quantify the weather-affected LiDAR feature
extraction risk using experimental data. Our results indicate that there is no significant increase in incorrect extraction risk
under adverse weather conditions when the system incorporates landmarks with strong retro-reflectors that enhance the signal
intensity returned to the LiDAR.

I. INTRODUCTION
We have examined fault-free integrity navigation subject to proposed driverless vehicle requirements. Our investigation showed
that alternative position reference updates are required in urban environments where global navigation satellite system (GNSS)
signals are frequently obstructed, even if the vehicle is equipped with high-quality inertial and odometry sensors and vehicle
kinematic constraints are exploited (Nagai et al., 2022).

To regain some control over navigation performance in challenging environments, we consider augmentation by local ranging
using light detection and ranging (LiDAR). LiDAR sensors detect objects in the surrounding space and measure the ranges and
angles of those within their field of view. Then, the detected data points are associated with pre-defined landmarks, the locations
of which are stored in a database accessible to the vehicle (Levinson et al., 2007). The mapped landmark locations and LiDAR
measurements enable the vehicle to estimate its position.

Although all objects in urban environments are candidates for external ranging sources for LiDAR, we specifically focus on
extracting pole-like landmarks (e.g., street lamps) because of their location flexibility, relative ubiquity, and defined shapes,
as demonstrated in Sefati et al. (2017) and Teo and Chiu (2015). In addition, the laser-based navigation system can achieve
centimeter-level accuracy under nominal conditions (Levinson et al., 2007; Wan et al., 2018).

Unfortunately, LiDAR navigation systems may not always operate nominally, and undetected faults in landmark identification
can threaten localization safety. LiDAR-based navigation requires two intermediary procedures for positioning from a raw
LiDAR scan: feature extraction and data association (see Fig. 1). Faults can occur during both procedures (Bar-Shalom and
Fortmann, 1988).

The feature extraction process involves identifying registered landmarks from raw data points. Incorrect extraction (IE) faults
occur when the system wrongly identifies irrelevant ‘obstacles’ as landmarks. Then, even if the extraction is correct, uncertainty
regarding the source of each measurement can lead to an incorrect association (IA), resulting in a mismatch between the
measurement observations and their corresponding locations in the database.



Figure 1: The estimation process for a LiDAR-based navigation system. Faults can occur during the feature extraction or data association
processes, threatening state estimation integrity.

The method detailed in Joerger et al. (2016) establishes the upper limits for the risk of incorrect associations (IA), and this risk
diminishes as the distance between landmarks increases. However, this condition holds only when the system correctly extracts
features. Therefore, in (Nagai et al., 2023) we developed a method to quantify feature extraction risk that used retro-reflectors
on desired landmarks to enhance the intensity of returned signals. These high-intensity signals can be differentiated from
surrounding obstacles that return low-intensity signals. Our experiments demonstrated that the probability of IE is exceedingly
low under clear weather daytime conditions.

Performance degradation of LiDAR in adverse weather is well-documented, as noted in studies by Levinson et al. (2007);
Filgueira et al. (2017); Heinzler et al. (2019). Wet surfaces reflect less laser light than dry surfaces because of laser beam
attenuation and scattering. These studies have discussed sensor performance deterioration but have not evaluated the resulting
impacts on navigation safety. The extent to which reduced reflectivity affects safety remains unknown, and this research aims
to quantify safety by evaluating the risk in different weather scenarios.

Following this introduction, Section II defines the faults and formulates the integrity risk equation. Section III examines the
risk of feature extraction, supported by LiDAR intensity measurements. Section IV addresses the experimental setup, results,
and analysis. Finally, Section V is our conclusion.

II. INTEGRITY RISK OF LIDAR POSITIONING ESTIMATION
1. Fault Definitions
We employ successive hypothesis analysis to determine if the system based on LiDAR positioning is operating correctly. The
binary hypothesis problem for feature extraction is{

H0 : correct extraction, P (CE)

H1 : incorrect extraction, P (IE)
(1)

where P (CE) defines the probability of the extracted feature having a corresponding landmark in the database, and P (IE)
defines the probability of the extracted feature not having a corresponding landmark in the database.

Since the data association follows the feature extraction, the hypotheses of the association process involve conditional proba-
bilities. We refer to these as successive binary hypotheses. The binary hypothesis problem for data association given correct
extraction is {

H0 : correct association given CE, P (CA|CE)

H1 : incorrect association given CE, P (IA|CE)
(2)

where P (CA|CE) denotes the probability that the correctly extracted feature is associated with the correct landmark position,
and P (IA|CE) indicates the probability that the correctly extracted feature is associated with the incorrect landmark position.

Given an incorrect extraction, we have{
H0 : correct association given IE, P (CA|IE)

H1 : incorrect association given IE, P (IA|IE)
(3)

where P (CA|IE) denotes the probability that the incorrectly extracted feature is associated with the correct landmark position.
P (IA|IE) represents the probability that an incorrectly extracted feature is associated with the incorrect landmark position. In
our analysis, P (CA|IE) is set to zero because an incorrectly extracted feature can never be associated correctly. The overview
of the fault definitions is in Table 1.



Table 1: Fault Definitions of LiDAR Positioning System

Feature Extraction Data Association
P (H0) = P (CE) P (H0) = P (CA|CE)

P (H1) = P (IA|CE)

P (H1) = P (IE) P (H0) = P (CA|IE) = 0

P (H1) = P (IA|IE)
def
= 1

We quantify the safety of the navigation system and derive the integrity risk equation represented by the probability of hazardously
misleading information P (HMI). From the law of total probability, the integrity risk is

P (HMI) = P (HMI|H0)P (H0) + P (HMI|H1)P (H1) (4)

where P (H0) and P (H1) are the prior probability of each of the two mutually exclusive hypotheses. P (HMI|H0) and
P (HMI|H1) are the corresponding risks of hazardously misleading information (i.e., excessive position estimate error).
Considering the feature extraction procedure defined in (1), (4) can be replaced by the following:

P (HMI) = P (HMI|CE)P (CE) + P (HMI|IE)P (IE). (5)

Considering the data association process given CE in (2), P (HMI|CE) becomes

P (HMI|CE) = P (HMI|CA,CE)P (CA|CE) + P (HMI|IA,CE)P (IA|CE). (6)

Since the position error resulting from an IE and IA is unknown, we upper bound the conditional probabilities of HMI in
these cases as 1:

P (HMI|IE)
def
= 1 (7)

P (HMI|IA,CE)
def
= 1 (8)

Due to the mutually exclusive conditions presented in (1) and (2), we can express P (IE) and P (IA|CE) using the following
equations.

P (IE) = 1− P (CE) (9)
P (IA|CE) = 1− P (CA|CE) (10)

Combining (5)-(10), the integrity risk upper bound is

P (HMI) ≤ 1− [1− P (HMI|CA,CE)]P (CA|CE)P (CE). (11)

Equation (11) does not take the concept of time into account. Considering the integrity risk at time index n, we rewrite (11) as:

P (HMIn) ≤ 1− [1− P (HMIn|CAN , CEN )]P (CAN |CEN )P (CEN ) (12)

where N denotes a range of time indices N = {1, 2, ...n}. To simplify upcoming calculations, the equation conservatively (but
not unrealistically) assumes that past incorrect extraction or association events result in current HMI .

The probabilities of correct association and extraction for all times are (Joerger et al., 2016):

P (CAN |CEN )
def
=

n∏
j=1

P (CAj |CEJ , CAJ−1) (13)

P (CEN )
def
=

n∏
j=1

P (CEj |CEJ−1) (14)

where J denotes a range of time indices J = {1, 2, ...j}. Equations (13) and (14) define the probabilities of all past extraction
and association events being correct.

We aim to reduce the integrity risk defined in (12), which comprises position error, association, and extraction faults, to meet
the driverless vehicle integrity requirements for urban environments specified in Table 2.



Table 2: The integrity required for driverless vehicles in urban environments

upper (EUSPA, 2021) lower (Reid et al., 2019)
availability > 99.9% (> 99.9%)

protection level (< 10−7 per moment) < 10−8 per moment
alert limit (l) (< 0.5 m) < 0.3 m

max. allowable position std. dev. (1σ) < 0.1 m < 0.05 m
( ) represents a value used in our analysis but not specified in the cited paper.

2. Integrity Risk Due to Position Estimate Error
The probability of a fault-free position error, denoted by P (HMIn|CAN , CEN ) in (12), can be calculated using the variance
of the position state:

P (HMIn|CAN , CEN ) = 2Φ[−l/σn]. (15)

where Φ[·] is the standard normal cumulative distribution function (CDF), l is the alert limit, and σn is the standard deviation
of the position error in the direction of interest at time epoch n. Given the integrity requirements in Table 2, the maximum
allowable position error standard deviation (i.e., maximum σn) is 0.05 m at the lower limit and 0.1 m at the upper limit.

Our simulation results presented in Nagai et al. (2022) demonstrated that a navigation system integrating four GNSS con-
stellations, a high-quality INS, wheel speed sensors, and vehicle kinematic constraints was insufficient to meet the integrity
requirements in Table 2 in a representative urban environment: downtown Chicago. However, when the system was augmented
with LiDAR positioning with landmark intervals at approximately 14 meters or less, even the lower limit integrity requirements
were achievable.

3. Integrity Risk Due to Incorrect Feature Association
GNSS utilizes pseudo-random noise (PRN) coding to associate observation data with navigation data; conversely, LiDAR
measurements do not have a tagging system that connects a pair of LiDAR measurements with the corresponding landmark
location in the database. The nearest neighbor algorithm has been employed (Bar-Shalom and Fortmann, 1988), which selects
the optimal pair based on the smallest Mahalanobis distance, to address this association issue. However, this approach can
result in incorrect associations P (IA|CE) in (2) due to measurement noise and a-priori state estimate errors when landmarks
are close to each other.

Joerger et al. (2016) and Hassani and Joerger (2023) derived a lower bound on P (CAj |CEJ , CAJ−1) for the nearest neighbor
algorithm. Using this result, we showed in Nagai et al. (2023), for the same downtown Chicago case study in Nagai et al. (2022),
that when both ranging and bearing LiDAR measurements are used for feature association, a minimum landmark spacing of
approximately two meters was sufficient to ensure that P (IAj |CEJ , CAJ−1) = 1−P (CAj |CEJ , CAJ−1) is negligibly small.

III. FEATURE EXTRACTION RISK
1. Methodology
Extracting landmarks from a large amount of LiDAR data points while minimizing extraction faults is challenging. The coarse-
to-fine approach, which involves initially identifying landmarks from larger segments and subsequently focusing on smaller
point scales, has been studied to address this issue (Teo and Chiu, 2015; Golovinskiy et al., 2009). Although height, position,
and shape information have been suggested to filter points belonging to poles, here we focus on intensity filtering. We treat
the decision-making process regarding whether points belong to a landmark as binary hypothesis problem, in this case guided
by the likelihood of observing the LiDAR measurements z under each hypothesis. This hypothesis test is conducted using the
Neyman-Pearson lemma.

Given that there are typically more obstacles than landmarks in an environment, we define the two hypotheses as follows:{
H0 : obstacle (non-reflective object)
H1 : landmark (reflective object).

(16)



The likelihood function are probability density of the normal distribution is expressed asp(z|H0) =
1√
2πσ2

0

exp(− 1
2σ2

0
(z − µ0)

2)

p(z|H1) =
1√
2πσ2

1

exp(− 1
2σ2

1
(z − µ1)

2)
(17)

where σ is the intensity standard deviation, and µ is the mean. The likelihood ratio test is

Λ(z) =
p(z|H1)

p(z|H0)

H1

≷
H0

γ (18)

where γ is a constant threshold whose possible values will be discussed later. We define IE from the four possible decisions:

1. pick H0 given H0 → correct = no integrity threat

2. pick H0 given H1 → no-extraction (NE) = no integrity threat

3. pick H1 given H1 → correct = no integrity threat

4. pick H1 given H0 → incorrect extraction (IE) = integrity threat.

Using the Neyman-Pearson Lemma, the IE risk per epoch can be calculated as follows

P (IEj |CEJ−1) =

∫
{z:∧(z)>γ}

p (z|H0) dx. (19)

We define the mutually exclusive hypothesis in (1), and the probability of correct extraction becomes

P (CEj |CEJ−1) = 1−
∫
{z:∧(z)>γ}

p (z|H0) dx. (20)

The NE event per epoch can be calculated as follows

P (NEj |CEJ−1) =

∫
{z:∧(z)<γ}

p (z|H1) dx. (21)

The values from µ and σ in (17) can be obtained from experimental data, which may be subject to the influence of weather
conditions.

2. Urban Environment Control
Based on our prior findings, urban environments designed to minimize integrity risk must meet three criteria. Firstly, to decrease
the fault-free position error, the landmarks should not be spaced too far apart (e.g., in our downtown Chicago case study, no
more than 14 meters). Secondly, to lower the association risk, landmarks should be not be spaced too closely (at least 2 meters
apart in the Chicago case study). Lastly, landmarks should exhibit unique likelihood functions, distinct from generic obstacles,
to make extraction decisions correctly.

A LiDAR sensor captures intensity information by measuring the number of reflected photons returned from features. The
properties of the feature surface determine the numbers, which can be used to classify features based on their unique intensity
distributions (Kashani et al., 2015). In our work, we wrap reflective tape around landmarks to amplify the intensity of their laser
returns. We employ the number of returned photons as the intensity metric for landmark decisions. The intensity distributions
will be derived from experimental results discussed in the following section.

IV. EXPERIMENT EXAMINING THE IMPACT OF WEATHER ON LIDAR INTENSITY
1. Experimental Setup
An experiment was conducted to collect data in March and April 2023 at Argonne National Laboratory in Lemont, Illinois. The
setup was comprised of a Vaisala Forward Scatter Sensor FD70 for measuring precipitation intensity and a high-fidelity Ouster
OS2 LiDAR with 128-channel resolution. Each LiDAR return ‘point’ has position and intensity information, the latter quantified



by the number of returned photons. The LiDAR sensor observed a reflective object (i.e., a stop sign) and a non-reflective object
(i.e., a steel object) from a distance. Figure 2 shows the visual image and point clouds of the extracted features. Additionally,
solar radiation data for the area was obtained from the World Meteorological Organization (World Meteorological Organization,
nd). This information was used to analyze the impact of weather on the LiDAR intensity measurements.

Figure 2: (a) Image of the reflective and non-reflective objects. (b) The corresponding LiDAR point cloud generated from the objects.

2. Experimental Results - Weather Effects on LiDAR Signal Intensity
We investigate the relationship between weather conditions—quantified by the amount of precipitation and solar radiation—and
LiDAR signal intensity. Figure 3 presents a dual-axis time series analysis spanning 24 hours (local time on the x-axis) on March
23, 2023. LiDAR scans were conducted at 5-minute intervals to capture a frame that contains the surrounding scene as a point
cloud. The top figure illustrates precipitation in inches per hour, represented by blue bars, and solar radiation in watts per square
meter, depicted with yellow bars. The bottom figure displays the maximum and minimum intensity values over the frame for
both reflective and non-reflective objects.

Figure 3: (Top) Precipitation in blue and solar radiation in yellow bars over 24 hours. (Bottom) Maximum and minimum LiDAR intensity
over the frame.

As many studies have noted, weather conditions can influence the intensity of LiDAR returns. Figure 3 shows spikes in the
precipitation bars during the morning, indicative of intermittent rainfall, and these spikes make the LiDAR intensity fluctuate.
Additionally, increases in the height of the yellow bars, representing more intense solar radiation, correspond to the maximum
intensity value of the reflective object. While weather conditions do affect LiDAR intensity values, the factor affecting extraction
decisions is the intensity difference between the minimum values of reflective objects and the maximum values of non-reflective
objects. This difference, as exhibited in Figure 3, is sufficient to prevent incorrect extractions; the probabilistic analysis leading
to this assertion is described in the following section.



3. Experimental Results - Feature Extraction Risk
We have classified weather conditions into four scenarios: night with rain, day with rain, night without rain, and day without
rain. Figure 4 illustrates the intensity histograms for each scenario, considering both reflective and non-reflective objects.

Figure 4: Four histogram plots showing LiDAR intensity measurements for reflective and non-reflective objects under different weather
conditions.

We employ Gaussian distributions to overbound the empirical CDFs (DeCleene, 2000; Rife et al., 2006) and compute integrity
risks at probabilities lower than retrievable from the empirical CDFs directly. Figure 5 shows an example of these overbounds.
Table 3 details the mean (µ) and standard deviation (σ) values of the bounding Gaussian distributions.

Figure 5: Gaussian overbounds: Gaussian distributions that upper bound integrity risk of the empirical distributions.

We evaluate landmark incorrect extraction (IE) risk using the overbounding Gaussian distributions; the results are shown in
Figure 6. The x-axis shows possible rejection thresholds and the y-axis the corresponding risk level. The four curves represent
the different weather scenarios. The results suggest that setting a rejection threshold on intensity of 800 would lead to IE risk
lower than 10−14.

Figure 7 shows no-extraction (NE) risk. These events occur when the system erroneously rejects a landmark, mistaking it for



Table 3: The mean (µ) and standard deviation (σ) values of the signal intensity photons for bounded Gaussian distributions.

material condition µ σ

reflective night with rain 3362 408
day with rain 3393 404

day without rain 3318 563
night without rain 3271 505

non-reflective night with rain 283 51
day with rain 306 53

day without rain 328 48
night without rain 326 48

an obstacle. If the rejection threshold is below 1000, the probability of a no-extraction event is below 10−5 in the worst-case
weather scenario.

From the results, when the threshold is between 800 and 1000, the system sets sufficient separation to mitigate IE risk and
simultaneously limit the no-extraction events. This finding suggests that weather conditions become less relevant when the
LiDAR navigation system relies on intensity measurements for feature detection.

Figure 6: The plot demonstrates the relationship between the rejection threshold and incorrect extraction risk under various environmental
conditions. The risk falls below 10−14 when the rejection threshold exceeds 800.

Figure 7: The plot illustrates the relationship between the rejection threshold and no-extraction event. In the worst-case scenario, this risk
falls below 10−5 when the rejection threshold is set below 1000.

Future studies should further investigate no-extraction events. While they do not pose integrity threats, they do result in an
sparseness in effective landmark density, which may require a decrease in landmark spacing to maintain navigation availability.

V. CONCLUSION
This study examines the integrity risk in LiDAR-based navigation for driverless vehicles as determined by positioning accuracy,
landmark incorrect association (IA), and incorrect extraction (IE) risks. It specifically explores how adverse weather impacts
IE risk by analyzing the differing intensity responses of reflective and non-reflective objects. Heavy rain and solar radiation
influence the reflectivity, but these weather impacts on intensity metrics for feature extraction are limited. The results show that



reflective and non-reflective objects are still easily distinguishable with low IE risk. Future studies should explore no-extraction
(NE) events, where the system mistakenly rejects landmarks as obstacles, leading to reduced landmark density and potential
degradation of LiDAR navigation availability.
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