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ABSTRACT
This paper examines adverse weather impacts on the safety of LiDAR-based navigation for self-driving cars. Our prior work
leveraged LiDAR intensity metrics to quantify and reduce incorrect feature extraction risk between pre-defined landmarks
equipped with strong retro-reflectors and obstacles under a daytime scenario. However, LiDAR intensity is affected by weather
conditions, showing correlations to water droplet density and solar radiation. We quantify the weather-affected LiDAR feature
extraction risk using experimental data. Our results indicate that there is no significant increase in incorrect extraction risk
under adverse weather conditions when the system incorporates landmarks with strong retro-reflectors that enhance the signal
intensity returned to the LiDAR.

I. INTRODUCTION
We have examined fault-free integrity navigation subject to proposed driverless vehicle requirements. Our investigation showed
that alternative position reference updates are required in urban environments where global navigation satellite system (GNSS)
signals are frequently obstructed, even if the vehicle is equipped with high-quality inertial and odometry sensors and vehicle
kinematic constraints are exploited (Nagai et al., 2022).

To regain some control over navigation performance in challenging environments, we consider augmentation by local ranging
using light detection and ranging (LiDAR). LiDAR sensors detect objects in the surrounding space and measure the ranges and
angles of those within their field of view. Then, the detected data points are associated with pre-defined landmarks, the locations
of which are stored in a database accessible to the vehicle (Levinson et al., 2007). The mapped landmark locations and LiDAR
measurements enable the vehicle to estimate its position.

Although all objects in urban environments are candidates for external ranging sources for LiDAR, we specifically focus on
extracting pole-like landmarks (e.g., street lamps) because of their location flexibility, relative ubiquity, and defined shapes,
as demonstrated in Sefati et al. (2017) and Teo and Chiu (2015). In addition, the laser-based navigation system can achieve
centimeter-level accuracy under nominal conditions (Levinson et al., 2007; Wan et al., 2018).

Unfortunately, LiDAR navigation systems may not always operate nominally, and undetected faults in landmark identification
can threaten localization safety. LiDAR-based navigation requires two intermediary procedures for positioning from a raw
LiDAR scan: feature extraction and data association (see Fig. 1). Faults can occur during both procedures (Bar-Shalom and
Fortmann, 1988).

The feature extraction process involves identifying registered landmarks from raw data points. Incorrect extraction (IE) faults
occur when the system wrongly identifies irrelevant ‘obstacles’ as landmarks. Then, even if the extraction is correct, uncertainty
regarding the source of each measurement can lead to an incorrect association (IA), resulting in a mismatch between the
measurement observations and their corresponding locations in the database.



Figure 1: The estimation process for a LiDAR-based navigation system. Faults can occur during the feature extraction or data association
processes, threatening state estimation integrity.

The method detailed in Joerger et al. (2016) establishes the upper limits for the risk of incorrect associations (IA), and this risk
diminishes as the distance between landmarks increases. However, this condition holds only when the system correctly extracts
features. Therefore, in (Nagai et al., 2023) we developed a method to quantify feature extraction risk that used retro-reflectors
on desired landmarks to enhance the intensity of returned signals. These high-intensity signals can be differentiated from
surrounding obstacles that return low-intensity signals. Our experiments demonstrated that the probability of IE is exceedingly
low under clear weather daytime conditions.

Performance degradation of LiDAR in adverse weather is well-documented, as noted in studies by Levinson et al. (2007);
Filgueira et al. (2017); Heinzler et al. (2019). Wet surfaces reflect less laser light than dry surfaces because of laser beam
attenuation and scattering. These studies have discussed sensor performance deterioration but have not evaluated the resulting
impacts on navigation safety. The extent to which reduced reflectivity affects safety remains unknown, and this research aims
to quantify safety by evaluating the risk in different weather scenarios.

Following this introduction, Section II defines the faults and formulates the integrity risk equation. Section III examines the
risk of feature extraction, supported by LiDAR intensity measurements. Section IV addresses the experimental setup, results,
and analysis. Finally, Section V is our conclusion.

II. INTEGRITY RISK OF LIDAR POSITIONING ESTIMATION
1. Fault Definitions
We employ successive hypothesis analysis to determine if the system based on LiDAR positioning is operating correctly. The
binary hypothesis problem for feature extraction is�

H0 : correct extraction, P (CE)

H1 : incorrect extraction, P (IE)
(1)

where P (CE) defines the probability of the extracted feature having a corresponding landmark in the database, and P (IE)
defines the probability of the extracted feature not having a corresponding landmark in the database.

Since the data association follows the feature extraction, the hypotheses of the association process involve conditional proba-
bilities. We refer to these as successive binary hypotheses. The binary hypothesis problem for data association given correct
extraction is �

H0 : correct association given CE, P (CAjCE)

H1 : incorrect association given CE, P (IAjCE)
(2)

where P (CAjCE) denotes the probability that the correctly extracted feature is associated with the correct landmark position,
and P (IAjCE) indicates the probability that the correctly extracted feature is associated with the incorrect landmark position.

Given an incorrect extraction, we have�
H0 : correct association given IE, P (CAjIE)

H1 : incorrect association given IE, P (IAjIE)
(3)

where P (CAjIE) denotes the probability that the incorrectly extracted feature is associated with the correct landmark position.
P (IAjIE) represents the probability that an incorrectly extracted feature is associated with the incorrect landmark position. In
our analysis, P (CAjIE) is set to zero because an incorrectly extracted feature can never be associated correctly. The overview
of the fault definitions is in Table 1.



Table 1: Fault De�nitions of LiDAR Positioning System

Feature Extraction Data Association

P(H0) = P(CE) P(H0) = P(CAjCE)
P(H1) = P(IA jCE)

P(H1) = P(IE ) P(H0) = P(CAjIE ) = 0

P(H1) = P(IA jIE ) def= 1

We quantify the safety of the navigation system and derive the integrity risk equation represented by the probability of hazardously
misleading informationP(HMI ). From the law of total probability, the integrity risk is

P(HMI ) = P(HMI jH0)P(H0) + P(HMI jH1)P(H1) (4)

whereP(H0) and P(H1) are the prior probability of each of the two mutually exclusive hypotheses.P(HMI jH0) and
P(HMI jH1) are the corresponding risks of hazardously misleading information (i.e., excessive position estimate error).
Considering the feature extraction procedure de�ned in (1), (4) can be replaced by the following:

P(HMI ) = P(HMI jCE)P(CE) + P(HMI jIE )P(IE ): (5)

Considering the data association process givenCE in (2), P(HMI jCE) becomes

P(HMI jCE) = P(HMI jCA; CE )P(CAjCE) + P(HMI jIA; CE )P(IA jCE): (6)

Since the position error resulting from anIE andIA is unknown, we upper bound the conditional probabilities ofHMI in
these cases as 1:

P(HMI jIE ) def= 1 (7)

P(HMI jIA; CE ) def= 1 (8)

Due to the mutually exclusive conditions presented in (1) and (2), we can expressP(IE ) andP(IA jCE) using the following
equations.

P(IE ) = 1 � P(CE) (9)

P(IA jCE) = 1 � P(CAjCE) (10)

Combining (5)-(10), the integrity risk upper bound is

P(HMI ) � 1 � [1 � P(HMI jCA; CE )]P(CAjCE)P(CE): (11)

Equation (11) does not take the concept of time into account. Considering the integrity risk at time indexn, we rewrite (11) as:

P(HMI n ) � 1 � [1 � P(HMI n jCAN ; CEN )]P(CAN jCEN )P(CEN ) (12)

whereN denotes a range of time indicesN = f 1; 2; :::ng. To simplify upcoming calculations, the equation conservatively (but
not unrealistically) assumes that past incorrect extraction or association events result in currentHMI .

The probabilities of correct association and extraction for all times are (Joerger et al., 2016):

P(CAN jCEN ) def=
nY

j =1

P(CA j jCEJ ; CAJ � 1) (13)

P(CEN ) def=
nY

j =1

P(CE j jCEJ � 1) (14)

whereJ denotes a range of time indicesJ = f 1; 2; :::j g. Equations (13) and (14) de�ne the probabilities of all past extraction
and association events being correct.

We aim to reduce the integrity risk de�ned in (12), which comprises position error, association, and extraction faults, to meet
the driverless vehicle integrity requirements for urban environments speci�ed in Table 2.



Table 2: The integrity required for driverless vehicles in urban environments

upper (EUSPA, 2021) lower (Reid et al., 2019)

availability > 99:9% (> 99:9%)
protection level (< 10� 7 per moment) < 10� 8 per moment
alert limit (l ) (< 0:5 m) < 0:3 m

max. allowable position std. dev. (1� ) < 0:1 m < 0:05m
( ) represents a value used in our analysis but not speci�ed in the cited paper.

2. Integrity Risk Due to Position Estimate Error

The probability of a fault-free position error, denoted byP(HMI n jCAN ; CEN ) in (12), can be calculated using the variance
of the position state:

P(HMI n jCAN ; CEN ) = 2�[ � l=� n ]: (15)

where�[ �] is the standard normal cumulative distribution function (CDF),l is the alert limit, and� n is the standard deviation
of the position error in the direction of interest at time epochn. Given the integrity requirements in Table 2, the maximum
allowable position error standard deviation (i.e., maximum� n ) is 0.05 m at the lower limit and 0.1 m at the upper limit.

Our simulation results presented in Nagai et al. (2022) demonstrated that a navigation system integrating four GNSS con-
stellations, a high-quality INS, wheel speed sensors, and vehicle kinematic constraints was insu�cient to meet the integrity
requirements in Table 2 in a representative urban environment: downtown Chicago. However, when the system was augmented
with LiDAR positioning with landmark intervals at approximately 14 meters or less, even the lower limit integrity requirements
were achievable.

3. Integrity Risk Due to Incorrect Feature Association

GNSS utilizes pseudo-random noise (PRN) coding to associate observation data with navigation data; conversely, LiDAR
measurements do not have a tagging system that connects a pair of LiDAR measurements with the corresponding landmark
location in the database. The nearest neighbor algorithm has been employed (Bar-Shalom and Fortmann, 1988), which selects
the optimal pair based on the smallest Mahalanobis distance, to address this association issue. However, this approach can
result in incorrect associationsP(IA jCE) in (2) due to measurement noise and a-priori state estimate errors when landmarks
are close to each other.

Joerger et al. (2016) and Hassani and Joerger (2023) derived a lower bound onP(CA j jCEJ ; CAJ � 1) for the nearest neighbor
algorithm. Using this result, we showed in Nagai et al. (2023), for the same downtown Chicago case study in Nagai et al. (2022),
that when both ranging and bearing LiDAR measurements are used for feature association, a minimum landmark spacing of
approximately two meters was su�cient to ensure thatP(IA j jCEJ ; CAJ � 1) = 1 � P(CA j jCEJ ; CAJ � 1) is negligibly small.

III. FEATURE EXTRACTION RISK

1. Methodology

Extracting landmarks from a large amount of LiDAR data points while minimizing extraction faults is challenging. The coarse-
to-�ne approach, which involves initially identifying landmarks from larger segments and subsequently focusing on smaller
point scales, has been studied to address this issue (Teo and Chiu, 2015; Golovinskiy et al., 2009). Although height, position,
and shape information have been suggested to �lter points belonging to poles, here we focus on intensity �ltering. We treat
the decision-making process regarding whether points belong to a landmark as binary hypothesis problem, in this case guided
by the likelihood of observing the LiDAR measurementsz under each hypothesis. This hypothesis test is conducted using the
Neyman-Pearson lemma.

Given that there are typically more obstacles than landmarks in an environment, we de�ne the two hypotheses as follows:

�
H0 : obstacle (non-reective object)
H1 : landmark (reective object):

(16)



The likelihood function are probability density of the normal distribution is expressed as
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where� is the intensity standard deviation, and� is the mean. The likelihood ratio test is

�( z) =
p(zjH1)
p(zjH0)

H 1

?
H 0

 (18)

where is a constant threshold whose possible values will be discussed later. We de�neIE from the four possible decisions:

1. pickH0 givenH0 ! correct = no integrity threat

2. pickH0 givenH1 ! no-extraction (NE ) = no integrity threat

3. pickH1 givenH1 ! correct = no integrity threat

4. pickH1 givenH0 ! incorrect extraction (IE ) = integrity threat.

Using the Neyman-Pearson Lemma, theIE risk per epoch can be calculated as follows

P(IE j jCEJ � 1) =
Z

f z:^ (z)> g
p(zjH 0) dx: (19)

We de�ne the mutually exclusive hypothesis in (1), and the probability of correct extraction becomes

P(CE j jCEJ � 1) = 1 �
Z

f z:^ (z)> g
p(zjH 0) dx: (20)

The NE event per epoch can be calculated as follows

P(NE j jCEJ � 1) =
Z

f z:^ (z)< g
p(zjH 1) dx: (21)

The values from� and� in (17) can be obtained from experimental data, which may be subject to the inuence of weather
conditions.

2. Urban Environment Control

Based on our prior �ndings, urban environments designed to minimize integrity risk must meet three criteria. Firstly, to decrease
the fault-free position error, the landmarks should not be spaced too far apart (e.g., in our downtown Chicago case study, no
more than 14 meters). Secondly, to lower the association risk, landmarks should be not be spaced too closely (at least 2 meters
apart in the Chicago case study). Lastly, landmarks should exhibit unique likelihood functions, distinct from generic obstacles,
to make extraction decisions correctly.

A LiDAR sensor captures intensity information by measuring the number of reected photons returned from features. The
properties of the feature surface determine the numbers, which can be used to classify features based on their unique intensity
distributions (Kashani et al., 2015). In our work, we wrap reective tape around landmarks to amplify the intensity of their laser
returns. We employ the number of returned photons as the intensity metric for landmark decisions. The intensity distributions
will be derived from experimental results discussed in the following section.

IV. EXPERIMENT EXAMINING THE IMPACT OF WEATHER ON LIDAR INTENSITY

1. Experimental Setup

An experiment was conducted to collect data in March and April 2023 at Argonne National Laboratory in Lemont, Illinois. The
setup was comprised of a Vaisala Forward Scatter Sensor FD70 for measuring precipitation intensity and a high-�delity Ouster
OS2 LiDAR with 128-channel resolution. Each LiDAR return `point' has position and intensity information, the latter quanti�ed
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