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Abstract—This paper examines the safety of LiDAR-based
navigation for driverless vehicles and aims to reduce the risk
of extracting information from undesired obstacles. We define
the faults of a LiDAR navigation system, derive the integrity
risk equation, and suggest landmark environments to reduce the
risk of fault-free position error and data association faults. We
also present a method to quantify feature extraction risk using
reflective tape on desired landmarks to enhance the intensity
of returned signals. The high-intensity returns are used in
feature extraction decisions between obstacles and pre-defined
landmarks using the Neyman-Pearson Lemma. Our experiments
demonstrate that the probability of incorrect extraction is below
10−14, and the method is sufficient to ensure safety.

Index Terms—integrity, LiDAR, urban navigation, driverless
vehicle

I. INTRODUCTION

Integrity refers to a navigation system’s capacity to en-
sure safe operation. We examined fault-free navigation in-
tegrity subject to proposed requirements for driverless vehicles
operating in urban environments where GNSS signals are
frequently obstructed. Our research revealed that alternative
position reference updates are necessary, even if the vehicle
is equipped with high-quality inertial sensors and odometers,
and exploits vehicle kinematic constraints [1]. To improve
navigation performance in congested urban areas, we propose
augmenting the system with local ranging using light detection
and ranging (LiDAR).

The LiDAR sensors detect objects within their field of view
and measure the ranges and azimuths to those objects. The
detected data points are then associated with pre-recorded
landmarks whose locations are stored in a database accessible
to the vehicle [2]. The combination of ranging measurements
and landmark locations enables the vehicle to estimate its po-
sition. Although all objects in urban environments can serve as
external ranging sources for LiDAR, our focus is on extracting
pole-like landmarks (e.g., street lamps) due to their flexible
location, relatively high abundance, and distinct shapes, as
demonstrated in [3] and [4]. The laser-based navigation system

can achieve centimeter-level accuracy under normal conditions
[2], [5]. However, faults in landmark identification can threaten
localization safety if undetected.

LiDAR-based navigation requires two intermediary proce-
dures that are necessary for positioning from a raw LiDAR
scan: feature extraction and data association. Faults can occur
during both processes [6] (Fig. 1). The feature extraction
process involves identifying registered landmarks from raw
data points, and incorrect extraction (IE) faults occur when
the system wrongly identifies non-participating ‘obstacles’ as
landmarks (Fig. 2). Even if the extraction works correctly,
uncertainty regarding the source of each measurement can lead
to an incorrect association (IA), resulting in a mismatch be-
tween the measurement observations and their corresponding
locations in the database.

Fig. 1. The estimation process for a LiDAR-based navigation system. Faults
can occur during the feature extraction and data association processes, and
impact state estimation integrity.

The method proposed in [7] determines the upper bounds of
incorrect association risk, which can be further improved by
adding redundant landmarks, as demonstrated in [8]. However,
these efforts require that the inertial sensors be periodically
reset, which severely limits their efficacy. Furthermore, they
did not compute incorrect extraction risk.

This study aims to develop a methodology to quantify
incorrect extraction risk using the Neyman-Pearson Lemma.
To achieve this, we propose using distinguishable landmarks
equipped with infra-red reflective tapes that strongly reflect
laser light. The higher intensity distribution is advantageous



Fig. 2. An illustration of incorrect extraction: The pedestrian (blue points)
was mistakenly extracted as the lamppost landmark (red points).

for making probabilistic extraction decisions while reducing
the incorrect extraction risk.

Following this introduction, Section II defines the faults and
formulates the integrity risk equation. Section III elaborates on
the probability of a fault-free position error, and Section IV
addresses data association risk. Section V examines the feature
extraction risk supported by LiDAR intensity measurements.
Section VI presents our experimental results, and Section VII
summarizes our conclusions.

II. INTEGRITY RISK

A. Fault Definitions

We employ successive hypothesis testing to decide if the
system is operating correctly. The binary hypothesis testing
problem for feature extraction is(

H0 : correct extraction, P (CE)

H1 : incorrect extraction, P (IE)
(1)

where CE defines the extracted feature as having a cor-
responding landmark in the database, and IE defines the
extracted feature as not having a corresponding landmark in
the database.

Since the data association follows the feature extraction,
the statistical hypothesis testing of the association process in-
volves conditional probabilities. The binary hypothesis testing
problem for data association given correct extraction is(

H0 : correct association given CE, P (CAjCE)

H1 : incorrect association given CE, P (IAjCE)
(2)

where CAjCE indicates that the correctly extracted feature
is associated with the correct landmark position, and IAjCE
indicates that the correctly extracted feature is associated with
the incorrect landmark position.

Given incorrect extraction we have(
H0 : correct association given IE, P (CAjIE)

H1 : incorrect association given IE, P (IAjIE)
(3)

where CAjIE indicates that the incorrectly extracted feature
is associated with the correct landmark position, which never
happens. IAjIE indicates that the incorrectly extracted feature
is associated with any landmark, which we conservatively

assume always happens (given IE). The overview of the fault
definitions is in Table I.

TABLE I
FAULT DEFINITIONS OF LIDAR POSITIONING SYSTEM

Feature Extraction Data Association
P (H0) = P (CE) P (H0) = P (CAjCE)

P (H1) = P (IAjCE)
P (H1) = P (IE) P (H0) = P (CAjIE) = 0

P (H1) = P (IAjIE) = 1

B. Integrity Risk Equation

We quantify the safety of the navigation system and derive
the integrity risk equation represented by the probability of
hazardously misleading information P (HMI). From the law
of total probability, the integrity risk is

P (HMI) = P (HMIjH0)P (H0) + P (HMIjH1)P (H1)
(4)

where P (H0) and P (H1) are the prior probability of each
of the two mutually exclusive hypotheses. P (HMIjH0) and
P (HMIjH1) are the corresponding risks of hazardously mis-
leading information (i.e., excessive position estimate error).
Considering the feature extraction procedure defined in (1),
(4) can be replaced by the following:

P (HMI) = P (HMIjCE)P (CE) + P (HMIjIE)P (IE):
(5)

Considering the data association process given CE in (2),
P (HMIjCE) becomes

P (HMIjCE) = P (HMIjCA;CE)P (CAjCE)+

P (HMIjIA;CE)P (IAjCE):
(6)

Since the position error resulting from an incorrect association
is unknown, we regard P (HMIjIA;CE) as one, which is the
upper bound. Therefore, (6) can be written

P (HMIjCE) �
P (HMIjCA;CE)P (CAjCE) + P (IAjCE):

(7)

Considering next the data association process given IE in (3),
P (HMIjIE) becomes

P (HMIjIE) � 1 (8)

because P (CAjIE) is zero, and P (HMIjIA; IE) and
P (IAjIE) are the upper bounded by one. Combining (5), (7),
and (8), the integrity risk upper bound is

P (HMI)

� 1� (1� P (HMIjCA;CE))P (CAjCE)P (CE):
(9)

Equation (9) is the probability at a single epoch, so the
integrity risk at any epoch n is

P (HMIn) �
1� (1� P (HMInjCAN ; CEN ))P (CAN jCEN )P (CEN )

(10)



where N denotes all time increments from time epoch 1 to n,
and P (CAN jCEN ) and P (CEN ) can be calculated by the
following equations [9].

P (CAN jCEN ) =

nY
l=1

P (CAljCAL�1; CEL�1) (11)

P (CEN ) =

nY
l=1

P (CEljCEL�1); L = 1; :::; l (12)

We aim to reduce the integrity risk defined in (10), which
comprises position error, association, and extraction faults, to
meet the driverless vehicle integrity requirements for urban
environments specified in Table II.

TABLE II
THE INTEGRITY REQUIRED FOR DRIVERLESS VEHICLES IN URBAN

ENVIRONMENTS

upper [10] lower [11]
availability > 99:9% (> 99:9%)

protection level (< 10−7 ) < 10−8

alert limit (< 0:5 m) < 0:3 m
the maximum allowable position error (1�) < 0:1 m < 0:05 m

( ) represents a value used in our analysis but not specified in the cited
paper.

III. FAULT-FREE INTEGRITY RISK

A. Multi-sensor Integrated Navigation System
We utilize a multi-sensor integrated navigation system con-

sisting of the inertial navigation system (INS), LiDAR, GNSS,
zero velocity update (ZUPT), wheel speed sensors (WSS), and
vehicle kinematic constraints with an extended Kalman filter
(EKF) for precise positioning [1].

The INS continuous linearized dynamic model is

_xk = F kxk +Gukuk +Gwkwk (13)

where x = [�rN ; �vN ; �EN ; ba; bg]
T is the state vector

having position �rN in the navigation frame, velocity �vN ,
attitude �EN , and INS bias errors for the accelerometer ba
and the gyros bg . u = [� ~fB ; �~!B ]T is the input vector having
accelerometer specific force measurement ~f in the body frame
and gyro rotation rate measurement ~!. w � N(0;W ) is the
white noise vector of the process model.

The ZUPT measurement model is described as

[�vB(= 0)]| {z }
z1k

= H1k

24 �rN
�vN
�EN

35
| {z }

x1k

+�1k (14)

where �vB is the velocity in the body frame, and �1k �
N(0;V 1k) is the vector of the velocity violation noise, mod-
eled as white.

LiDAR measures ranging and bearing, and the functions are

hdi(r) =
q

(pix � x)2 + (piy � y)2 + vd (15)

h�i(r) = tan�1(
pix � x
piy � y

)�  + v� (16)

where, di is the ranging measurement of the ith landmark
(i = 1; 2; :::; n), �i is the angle measurement, pi is a landmark
location in the navigation frame, and vd; v� are the white noise
vector of the LiDAR measurements. For the EKF application,
(15) and (16) are linearized as�

di � di�

�i � �i�
�

| {z }
z2k

= H2k

24 �rN
�EN

�pi

35
| {z }

x2k

+�2k�2k: (17)

The EKF GNSS double difference measurement model is�
��kl �Gklr�

�kl �Gklr�

�
| {z }

z3k

= H3k

2664
�rN
m�

m�

N

3775
| {z }

x3k

+�3k�3k (18)

where � is carrier wavelength, � is the carrier phase mea-
surement, � is code phase measurement, G is the observation
matrix containing line of sight vectors excluding the pseudor-
ange measurements associated with the blocked and reflected
signals, m is the multipath error, N is the integer ambiguity,
�3 is the noise coefficient matrix, and �3 � N (0;V 3) is the
white noise vector of the GNSS measurements.

The measurement model consisting of wheel speed sen-
sor measurement in the along-track direction, non-holonomic
(NHL) constraint resisting lateral sliding, and holonomic (HL)
constraint on vertical movement is

�vB|{z}
z4k

= H4k

24 xk�RR
�RL

35
| {z }
x4k

�LB� ~!B + �4k�4k (19)

where �RR; �RL are the radius of the wheels, LB is the skew-
symmetric matrix form of distance between the center of mass
and the wheel axis, � ~!B is gyro rotation rate measurement,
�4 is the noise coefficient matrix, and �4 � N (0;V 4) is the
white noise vector of the wheel speed sensor measurements.

We use the state error variance, and the EKF error covari-
ance matrix propagation is

P̂ k = (I�KkHk) �P k (20)
�P k+1 = �kP̂ k�

T
k +Qk (21)

where P̂ is the updated estimate covariance, K is the Kalman
gain, �P is the predicted estimate covariance, � is the state
transition matrix, and Q is the covariance associated with
w in the discrete-time domain. �P contains each state’s error
variance along the diagonal:

�P =

266664
�r � � � �
� �v � � �
� � �E � �
� � � �ba �
� � � � �bg

377775 : (22)

The position error covariance block (�r) includes the along-
track (�x) and the cross-track (�y) error standard deviations.



TABLE III
MULTI-SENSOR NOISE PARAMETERS.

Sensor Noise (1�) Unit Value
INS (STIM300)
Accelerometer Velocity Random Walk m/s/

p
hr 0.07

Bias Stability mg 0.05
Bias Time Constant hr (1)
Bias Repeatability mg 0.75

Gyro Angular Random Walk deg/
p

hr 0.15
Bias Stability deg/hr 0.5

Bias Time Constant hr (1)
Bias Repeatability deg/hr 4

LiDAR Ranging m 0.01
(Ouster OS1-64) Angle deg 0.3

Survey m 0.02
GNSS
Carrier Thermal Noise m 0.001

Multipath m 0.005
Time Constant s 150

Code Thermal Noise m 0.25
Multipath m 0.5

Time Constant s 80
Wheel Speed Sensor Measurement Noise m/s 0.05

Kinematic Constraints Violation Noise m/s 0.001
ZUPT Violation Noise m/s 0.001

( ) is the value used in our analysis but not specified by the manufacturer.

Since �P will be provided to the vehicle at the INS output rate,
which will be higher than another output rate, it is chosen for
integrity evaluation rather than P̂ .

B. Integrity Risk by Position Error

The probability of a fault-free position error, denoted by
P (HMInjCAN ; CEN ) in (10), can be calculated using the
variance of the position state. According to [12], the equation
for this probability is given by:

P (HMInjCAN ; CEN ) = 2�[� l

�n
] (23)

where �[·] is the standard normal cumulative distribution
function (CDF), l is the alert limit, and �n is a standard
deviation of the position error (i.e., �x and �y). Given the
integrity requirements in Table II, the maximum allowable
position error standard deviation should be 0.05 m for the
lower limit and 0.1 m for the upper limit.

Figure 3 shows the position error standard deviation along
the track (�x) simulated in downtown Chicago, where GNSS
signals are frequently compromised [1]. Without LiDAR, the
system does not achieve the integrity requirements due to
insufficient accuracy. However, when LiDAR positioning is
utilized with landmark intervals between 14 and 35 m, the
position error falls below the maximum allowable position
error standard deviation. The landmark density determines the
LiDAR position reference rate, and these results demonstrate
that narrower landmark intervals are beneficial for accurate
positioning.

IV. DATA ASSOCIATION RISK

GNSS utilizes pseudo-random noise (PRN) coding to as-
sociate observation data with navigation data, while LiDAR

Fig. 3. Position error along the track simulated in downtown Chicago without
LiDAR, with LiDAR at the 35-meter intervals, and at the 14-meter intervals.

measurements do not have a tagging system that connects a
pair of LiDAR measurements with the corresponding landmark
location in the database. To address this association issue,
the nearest neighbor algorithm has been employed [6], which
selects the optimal pair based on the smallest Mahalanobis
distance. However, this approach can result in incorrect as-
sociations P (IAjCE) due to measurement noise and state
errors, particularly when landmarks are in close proximity to
one another. This section discusses the minimum distance at
which the risk of incorrect associations is sufficiently low to
maintain integrity.

A. Association Algorithm

Given a set of m landmarks’ measurements, there are
m! possible permutations. For each jth permutation (j =
0; 1; :::;m!� 1), the innovation vector is defined as [9]


j = z � hj(�r) � yj �Hj��r + v (24)

where z is the LiDAR measurements with fixed order, and
hj(�r) is the measurement estimations with jth hypothetical
order, yj is the difference between correct observation h�(r)
and hypothetical order hj(r), Hj is observation matrix, and
v is measurement noise vector. The mean and the covariance
of the innovation vector (29) are


j � N(yj ;�j); �j = Hj
�PH>j + V j (25)

where �P is the state covariance, and V is the LiDAR
measurement white noise. The Mahalanobis distance [13] is
defined as

jj
j jj��1
j

=
q

>j ��1

j 
j : (26)

The algorithm selects the permutation that results in the
minimum Mahalanobis distance for the association decision,



as this distance ideally approaches zero when the correct
association is made.

j� = argmin
j

jj
j jj��1
j

(27)

B. Association Risk

The incorrect association event assigning the measurement
from the jth permutation (j 6= 0) to the correct pair (j = 0)
happens if:

IA
def
=
�
k
jk��1

j
� k
0k��1

0

�
; (28)

and the probability of incorrect associations becomes

P (IAjCE) = P

0@m!�1[
j=1

k
jk��1
j
� k
0k��1

0

1A : (29)

The square of Mahalanobis distance k
jk2��1
j

yields a noncen-
tral chi-squared distribution with a non-centrality parameter
y2
j = y>j ��1

j yj , which is used to evaluate the probability
of incorrect association. However, the probability computation
with (29) is too complicated to compute directly, so we use the
following equation taking the upper bound per epoch derived
in [9] and [7].

P (IAjCE) � P

 
q2 � min

j; j 6=0

y2
j

4

!
=

Z 1
min y2

j=4

f(x)dx

(30)
where q2 is a chi-squared random variable with nw degrees
of freedom. Since the hypotheses defined (2) are mutually ex-
clusive, the lower bound on probability of correct association
per epoch is

P (CAjCE) � 1� P (IAjCE): (31)

C. Minimum Distance Analysis

Equation (30) demonstrates that IA decreases as the non-
centrality parameter y2

j increases, which can be achieved by
increasing the distance between the landmarks. We evaluate
the probability of IA in a scenario where a moving vehicle is
positioned 6 m away from two landmarks, as shown in Figure
4a, using either ranging, bearing, or both ranging and bearing
measurements. The probability based on ranging increases as
the vehicle moves closer to the middle of the two landmarks
(Fig. 4b). Conversely, the probability of bearing increases
as the vehicle moves farther away from the landmarks (Fig.
4c). When both ranging and bearing measurements are used
for feature association while maintaining a distance of 1.4
m or more between the two landmarks, the probability is
always below 10�14, which should easily satisfy even the most
stringent integrity requirements (Fig. 4d).

Landmark density is a factor in maintaining the integrity of
LiDAR positioning. A dense distribution can help minimize
position errors discussed in Section III, but a spaced-out
arrangement is necessary to reduce the risk of IA. Thus,
landmarks for positioning must be carefully selected from
environments.

Fig. 4. (a) An assumed environment for IA analysis. The probability of
IA using either (b) ranging, (c) bearing, or (d) both ranging and bearing
measurements.

V. FEATURE EXTRACTION RISK

Extracting landmarks from a large set of LiDAR data points
while minimizing detection faults is challenging. The coarse-
to-fine concept, which involves the gradual refinement of pole
objects that we use for landmarks from the segment to the
point scale, has been studied to address this issue [4], [14].
Although height, position, and shape information have been
suggested to filter points belonging to poles, we instead choose
intensity filtering because it is more computationally efficient
solution (demonstrated in Section VI) and, more importantly,
provides a direct means to quantify integrity risk. Specifically,
we leverage intensity measurements for decision-making by
assuming reflective tapes are wrapped vertically on registered
landmarks.

LiDAR captures intensity information measuring the num-
ber of reflected photons returned from features. The properties
of the feature surface determine the numbers, which can
classify features based on their unique intensity range [15].
We employ the number of returned photons as the intensity
metric for landmark decisions.

Given that there are typically more obstacles than landmarks
in an environment, we define the binary hypothesis as follows:(

H0 : obstacle
H1 : registered landmark:

(32)

The probability density of the normal distribution is expressed


