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ABSTRACT  

 

This paper presents new methods to find the optimal non-

least-squares (NLS) estimator that minimizes the integrity 

risk in Receiver Autonomous Integrity Monitoring 

(RAIM).  These methods aim at lowering the integrity 

risk in exchange for a slight increase in nominal 

positioning error.  A first algorithm is formulated as a 

multi-dimensional minimization problem, which directly 

minimizes integrity risk, but can only be solved using a 

time-consuming iterative process involving the 

integration of a bivariate normal distribution.  Then, 

parity space representations are exploited to develop a 

new computationally-efficient, near-optimal NLS-

estimator design method, which uses a straightforward 

line-search process.  Performance analyses for an example 

multi-constellation Advanced RAIM (ARAIM) 

application show that this new method enables significant 

integrity risk reduction, even in real-time implementations 

where computational resources are limited. 

 

I.  INTRODUCTION  

 

This paper describes the design, analysis and evaluation 

of new methods to determine the optimal estimator that 

minimizes the integrity risk in Receiver autonomous 

integrity monitoring (RAIM) [1], [2].  

 

RAIM exploits redundant measurements to achieve self-

contained fault detection at the user receiver.  With the 

modernization of GPS, the full deployment of 

GLONASS, and the emergence of Galileo and Beidou, an 

increased number of redundant ranging signals becomes 

available, which has recently drawn a renewed interest in 

RAIM.  In particular, RAIM can help alleviate 

requirements on ground monitors.  For example, 

researchers in the European Union and in the United 

States are investigating Advanced RAIM (ARAIM) for 

worldwide vertical guidance of aircraft [3].  

 

One of the primary tasks in RAIM is to evaluate the 

integrity risk, which is the probability of undetected faults 

causing unacceptably large errors in the estimated 

position [4].  Integrity risk evaluation involves both 

assessing the fault-detection capability and quantifying 

the impact of undetected faults on position estimation 

errors.  Hence, both the detector and the estimator 

influence RAIM performance. 

 

The RAIM detector and estimator have both been 

investigated in the literature.  RAIM detectors were 

analyzed in [5] and [6], which showed that for realistic 

navigation requirements, the optimal detector, which 

minimizes the integrity risk, approaches the solution 



separation (SS) RAIM detector. Therefore, SS test 

statistics are used in this work as they provide a 

computationally-efficient, practical approximation of the 

optimal detection region.  

 

In parallel, with regard to estimation, researchers have 

explored the potential of replacing the conventional least-

squares (LS) process with a non-least-squares (NLS) 

estimator to lower the integrity risk in exchange for a 

slight increase in nominal positioning error [7], [8], [9]. 

The resulting methods show promising reductions in 

integrity risk, but are either non-optimal [7], [8] or 

computationally expensive [9]. 

 

In response, this paper provides new methods to 

determine the optimal estimator in RAIM, which 

minimizes integrity risk.  Of particular concern is the fact 

that the new estimator design methods may be 

implemented in applications where processing resources 

are limited. In this perspective, a computationally-

efficient, near-optimal algorithm is developed, and the 

tradeoff between increasing computation time and 

decreasing integrity risk is quantified.  

 

Section II of this paper describes the conventional LS 

estimator-based SS RAIM method (derived in [10] and, 

e.g., implemented in [11]) using parity space 

representations.  The parity vector is the simplest, most 

fundamental expression of detection capability [12].  

Section II explains, for example, that the SS RAIM 

detection boundary is a polytope in parity space [13].  

This graphical representation is used throughout Sections 

III and IV to modify the integrity risk evaluation process.   

 

In Section III, new methods are established to design NLS 

estimators.  The first algorithm aims at minimizing 

integrity risk, subject to a false alarm constraint, 

regardless of computation load.  The method avoids 

making conservative assumptions used in [9], which are 

discussed in this paper.  Instead, the method resorts to 

direct integrity risk evaluation (DIRE), thereby providing 

the means to quantify the highest-achievable integrity 

performance.  In this case, the NLS estimator design 

process is formulated as a multi-dimensional optimization 

(MDO) problem, which is solved using a time-consuming 

iterative procedure.  

 

This ‘DIRE MDO’ serves as a starting point for Section 

IV, where a second method is developed to reduce 

processing time while still providing lower integrity risk 

than conventional LS-based RAIM.  Section IV presents a 

one-dimensional optimization (ODO) process to 

approximate the MDO, and an integrity risk bounding 

method (IB) to replace the DIRE.  On the one hand, the 

integrity risk increases slightly due to conservative 

bounding assumptions detailed in the paper.  On the other 

hand, the considerable simplifications from MDO to 

ODO, and from DIRE to IB result in a computationally-

efficient ‘IB ODO’ method. 

 

To quantify the drop in processing time from DIRE MDO 

to IB ODO, a performance analysis is carried out.  

Worldwide availability maps are established for an 

example aircraft approach application using Advanced 

RAIM (ARAIM) with dual-frequency GPS and Galileo 

satellite measurements.  The results show that availability 

using a NLS estimator is much higher than using the LS 

estimator, and that the IB ODO NLS-estimator-design 

method accomplishes an effective compromise between 

run time and availability performance, as compared to 

both DIRE and to conventional LS-based RAIM method.   

 

II.  BACKGROUND ON SOLUTATION 

SEPARATION RAIM USING A LEAST-SQUARES 

ESTIMATOR 

 

A. General Integrity and Continuity Risk Definitions 

 

The general definition of the integrity risk, or probability 

of hazardous misleading information (HMI), is given by: 

 

 ( )TqPPHMI <>¹ ||,|| ?e   (1) 

 

where  

e  is the error on the estimated parameter of 

interest (called ‘state’ of interest) 

?  is a specified alert limit that defines hazardous 

situations (e.g., specified in [4] for aircraft 

approach navigation) 

q   is the detection test statistic  

T  is the detection threshold 

 

Considering a set of 1+h  mutually exclusive, jointly 

exhaustive hypotheses 
iH , the law of total probability 

can be used to express the integrity criterion as: 
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where: 

REQI   is the integrity risk requirement (also specified 

in [4] for example aviation applications). 

HiP  is the prior probability of 
iH  occurrence 

0H  is the fault-free hypothesis 

iH  for hi ...,,1=   are the fault hypotheses 

corresponding to faults on subset measurement 

‘i’ (including single-satellite and multi-satellite 

faults) 

 

References [13] and [14] give procedures to limit the 

number of fault hypotheses that need to be monitored 



against, while still accounting for all other fault 

hypotheses in the overall integrity risk evaluation. 

 

Under fault-free hypothesis 
0H , the detection threshold 

T  is typically set based on an allocated continuity risk 

requirement 
REQC  (e.g., specified in [4]) to limit the 

probability of false alarms.  T  can be defined as:  
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B. Measurement Equation and Least-Squares Estimator 

 

The joint probability in equation (2) is a function of two 

random variables e and q , both derived from a 

measurement equation.  Let n  and m  respectively be the 

number of measurements and number of states, and let *z  

be the 1³n  vector of stacked measurements.  This work 

assumes that the cumulative distribution function (CDF) 

of nominal measurement errors is bounded by a zero 

mean Gaussian distribution with covariance matrix *V  

[15].  Vector *z  is pre-multiplied by 
2/1

*

-
V  to obtain the 

‘normalized’ measurement equation: 

 

 fvHxz ++=  (4) 

 

where  

*

2/1

* zVz
-=    is 1³n  the normalized measurement vector 

H   is the mn³  normalized observation matrix,  

x   is the 1³m  state vector, 

f   is the 1³n  normalized fault vector. 

v  is the 1³n  normalized measurement noise 

vector composed of zero-mean, unit-variance 

independent and identically distributed (i.i.d.) 

random variables.  

 

We use the notation:  ),(~ 1 nn I0v ³N , where ba³0  is an 

ba³  matrix of zeros and nI  is an nn³  identity matrix. 

 

The least-squares (LS) estimate for the state of interest 

(e.g., for the vertical position coordinate, which is of 

primary interest in aircraft approach navigation) obtained 

using all available measurements is also referred to as 

full-set solution.  It is defined as:  

 

 zs
Tx 00̂ ¹   (5) 

 

where 0s  is the 1³n  vector of LS coefficients (the same 

notations are used in [13]). The full-set estimate error is 

noted 0e :  00 x̂x-¹e , where x  is the true value of the 

state of interest.  

 

C. Solution Separation Test Statistics 

 

A multiple-hypothesis SS RAIM method [10], [11] is 

adopted for detection of f . A set of mutually exclusive, 

exhaustive hypotheses iH , for hi ...,,0= , is 

considered.  Under iH , a number in  of measurements is 

simultaneously impacted by the fault.  The fault-free 

subset solution, which excludes these in  measurements is 

written as: zs
T

iix ¹ˆ , where 
is  is the 1³n  vector of the 

subset solution’s LS coefficients with zeros for elements 

corresponding to the in  faulted measurements [13].  SS 

test statistics are defined as:   

 

  zs
T

iii xx D=-¹D ˆ
0̂ ,  for hi ...,,1= ,  

 

where  ( )2,~ i

T

ii DDND sfs , and ii sss -=D 0 .   

 

The normalized SS statistics are given by:  

 

  zs
T

iiiiq *DD =D¹ s ,   for   hi ...,,1=  (6) 

 

where iii DDD = sss * .   

 

Of significance in this work is the fact that iq  can be 

written in terms of the parity vector, which is defined as: 

 

 ( )fvQQzp +=¹  (7) 

 

where Q  is the nmn ³- )(  parity matrix defined as 

mn

T

-=IQQ   and  mmn ³-= )(0QH .  

 

For graphical representation purposes, single satellite 

faults (i.e., 1=in  and nh= ) are assumed in the first 

sections of this paper.  Multi-satellite faults are addressed 

later, in Section IV-B.  In this case, the test statistics iq , 

for hi ,...,1= , can be written as [13]: 

 

 puzs
T

i

T

iiq == D*  (8) 

 

where    
2/1)( -¹ i

TT

iii QAQAQAu .  

 

and   ]1[ 1)(1)1(

T

in

T

i

T

i ³-³-= 00A ,  

 

i.e., iQA  is the i
th

 column of Q  and iu  is the unit 

direction vector of iQA , which is the direction of the i
th

 

‘fault line’ in parity space as explained below.  

 



D. Illustrative Example in Parity Space  

 

To illustrate the result in equation (8), we consider the 

example satellite geometry in the sky-plot in Fig. 1 where 

six GPS space vehicles (SVs) were in view of the user 

receiver.  This example is used in Sections II to IV.  The 

measurement equation (4) becomes: 
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where: 

ir   for 6,...,1=i , are the six GPS pseudoranges 

ie  are the 13³  satellite line of sight vectors 

Ux  is the 13³  user position vector in a local 

reference frame 

Ut  is the user receiver clock bias 

 

Since 4=m  and 6=n , the parity space of dimension 

)( mn-  is two-dimensional, which is convenient for 

display.   

 

In addition, the measurement noise vector is given by 

),(~ 616 I0v ³N , and the fault vector f  represents six 

single-SV faults, with unknown fault magnitude 
if .   
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As shown in parity space in Fig. 2, when the fault 

magnitude 
if  varies from -¤ to +¤, the mean of p  

describes a line passing through the origin with unit 

direction vector 
iu , and called the ‘fault line’.  As 

expressed in equation (8), the SS test statistic iq  can be 

represented as a projection of p  on the i
th

 ‘fault line’ [13]. 

 

It follows that the SS RAIM detection boundary is a 

polygon (or a polytope in higher-dimensional parity 

spaces).  Assuming equally-valued thresholds 

61 ... TT == , Fig. 3 depicts the SS RAIM detection 

boundary.  This boundary is shown in references [5] and 

[6] to approach the optimal detection region that 

minimizes integrity risk.  SS test statistics are used in this 

work because they provide a computationally-efficient, 

practical approximation of the optimal detection region. 

 

 
Fig. 1  Azimuth-Elevation Sky Plot For an Example 

Satellite Geometry 

 

 
Fig. 2  Parity Space Representation of the Solution 

Separation Test Statistics 
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Fig. 3  Parity Space Representation of the Solution 

Separation Detection Boundary 

 

 

Given the detector in Fig. 3, and given the LS estimator in 

equation (5), the integrity and continuity risk equations 

(2) and (3) can be expressed for conventional SS RAIM.  

However, simultaneously accounting for all six SS test 



statistics 
iq , which are all mutually correlated, would be 

cumbersome.  In response, an upper bound 
HMIP  on the 

integrity risk is derived and written as: 
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where the worst-case fault magnitude if , which 

maximizes integrity risk under 
iH , can be determined 

using a straightforward line-search process [13].  Also, to 

avoid changing notations for the fault-free case (i.e., for 

the term corresponding to 0=i ), the following identity is 

defined:  }|{|}||,|{| 0000 ?? >¹<> ee Tq . 

 

In equation (10), HMIP  uses an upper bound on the 

probability of no-detection:   

 

)||()||,...,||( 6611 iiii fTqPHTqTqP <¢<<  (11) 

 

This probability is represented in Fig. 4 under 1H , i.e., 

assuming a fault on SV 1:  the actual no detection 

probability given on the left-hand-side in equation (11) is 

the probability of p  being inside the red detection 

boundary in Fig. 4.  Evaluating the probability of being 

within this complex polygon would be tedious.  Instead, 

the bound on the right-hand-side in equation (11) 

expresses the probability of being within the gray band in 

Fig. 4, which is easy to compute.  This integrity risk 

bound is conservative, but remains relatively tight 

because most of the probability density is concentrated 

around the fault line (which represents the mean of p  for 

varying fault magnitudes).   

 

Additional bounding steps are typically implemented in 

conventional SS RAIM [10], [11].  These steps are fully 

detailed in [13], and will be used later in Section IV-B. 

 

In parallel, a continuity risk bound is established, and 

given by:  
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Fig. 4  Parity Space Representation of the First Step in 

the SS RAIM Integrity Risk Bound 

 

 
Fig. 5  Parity Space Representation of the SS RAIM 

Continuity Risk Bound 

 

The actual probability of false alarm is the probability of 

p  being outside the detection boundary when the mean of 

p  is 12³0 .  In Fig. 5, lines of constant probability density 

are displayed under 0H .  In this case again, evaluating 

the probability of being outside the red boundary would 

be tedious.  Instead, the easy-to-compute bound on the 

right-hand-side of the inequality in equation (12) can be 

represented as counting multiple times the probabilities of 

p  being in the areas with different shades of gray, as 

indicated in Fig. 5.  This approach is conservative, but not 

overly-conservative since the probability density levels 

under 0H  are extremely low outside the detection 

boundary.   

 

Equation (12) is used to determine the detection 

thresholds iT , for 6,...,1=i .  Thresholds iT  are set to 

limit the probability of false alarm, for example, 

following the equation:  })2({ 0

1

HREQi hPCQT -=   where 

the function {}1-Q  is the inverse tail probability of the 



standard normal distribution, and in this case, the number 

of fault hypotheses is six ( h =6).   

 

The remainder of the paper aims at designing new NLS 

estimators.  Since the estimator does not impact the 

continuity risk, the focus is placed on minimizing the 

integrity risk in equation (10). 

 

III.  NON-LEAST-SQUARES ESTIMATOR DESIGN 

TO MINIMIZE INTEGRITY RISK 

 

This section describes a method to find the optimal 

estimator that minimizes integrity risk.  This first method 

will be computationally expensive, but provides the best 

achievable integrity performance.  It will be used as a 

starting point in Section IV to derive an estimator design 

procedure requiring much shorter processing times.  

 

A. Direct Integrity Risk Evaluation (DIRE) Using a Non-

Least-Squares (NLS) Estimator 

 

As mentioned Section I, three main research efforts have 

investigated the possibility of using non least squares 

(NLS) estimators in RAIM [7], [8], [9].  This section 

builds upon the work by Blanch et al. in [9].  However, in 

contrast with [9], the method described here enables 

direct integrity risk evaluation (DIRE) instead of using 

protection level (PL) equations.  DIRE provides tighter 

integrity risk bounds than PL [13].  

 

The NLS estimate for the state of interest NLSx̂  can be 

written as a sum of two orthogonal components of the 

measurement vector z :   

 

 Qzɓzs
TT

NLSx +¹ 0
ˆ  (13) 

 

where  

zs
T

0   is the state estimate in equation (5), which lies 

in the column space of H  

Qzɓ
T   lies in the parity space, or left null space of H  

ɓ  is the 1)( ³-mn  design parameter vector also 

called ‘estimator modifier’  

 

This section presents a method to determine the vector ɓ 

that minimizes integrity risk.  

 

Substituting equation (4) into (13), and using the 

definition of Q , shows that the estimator is unbiased, so 

that the NLS state estimate error can be written 

independently of x  as: 

 

  ( )( )fvQɓs ++=-¹ TT

NLSNLS xx 0
ˆe   (14) 

 

Integrity risk evaluation is carried out using equation (10), 

but the estimate error 
NLSe  replaces 

0e .  Because 
NLSe  is 

not derived from a LS estimator, 
NLSe  and 

iq  are 

correlated [13]. In this case, the joint probabilities in 

equation (10) cannot be evaluated as products of 

probabilities. Fortunately, numerical methods are 

available to compute joint probabilities for multi-variate 

normally distributed random vectors [16].  These methods 

are computationally expensive, which will be addressed in 

Section IV. 

 

The estimate error 
NLSe  and the test statistic 

iq  can be 

arranged in a bivariate normally distributed random 

vector defined as: 
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where equations (7) and (8) were used to express the test 

statistic iq .   

 

The impact of the estimator modifier vector ɓ is 

illustrated in a ‘failure mode plot’ in Fig. 6, for the 

example six-satellite geometry displayed in Fig. 1, under 

hypothesis 
5H  of a fault on SV 5.  To analyze the impact 

of ɓ, the new NLS-estimator-based method is compared 

to the conventional RAIM method using the LS estimator, 

for which 
1)( ³-= mn0ɓ .  In Fig. 6, the estimate error e is 

displayed versus test statistic 5q . The notation ‘e’ 

designates both 0e  for the LS estimator, and NLSe  for the 

NLS estimator. Conventional RAIM is represented using 

dashed lines, whereas dark-gray color and solid lines are 

employed for the new method using the NLS estimator.  

Both methods are evaluated assuming the measurement 

model in equation (9), and assuming a prior probability of 

fault HiP , for 0̧i , of 10
-4

.  

 

Example navigation requirements include a continuity 

risk requirement REQC  of 8·10
-6

, and an alert limit ? of 15 

m.  The alert limit ? and the detection threshold 5T  

define the boundaries of the HMI area in the upper left-

hand quadrant (shadowed in light red).  Under 5H , as the 

fault magnitude varies, the means of e and of 5q  

describe a ‘fault line’ passing through the origin, with 

slope 
5,0g  for the LS estimator, and 

5,NLSg  for the NLS 

estimator.  For a given fault magnitude, lines of constant 



joint probability density are represented.  These contours 

are ellipses because e and 
5q  are normally distributed.  

The ellipses are labelled in terms of ),(log10 ii qf eɖ- , 

where:  
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The 10
-2

 joint probability density level is emphasized for 

illustration purposes.  The probability of being in the HMI 

area is the integrity risk given 
5H .  

 

For the LS estimator, 
0e  and 

iq  are statistically 

independent [13], so that the major axis of the dashed 

ellipse is either horizontal, or vertical.  In contrast, using a 

NLS estimator provides the means to move the dark 

ellipse away from the HMI area, hence reducing the 

integrity risk. The influence of the estimator modifier 

vector ɓ is threefold. 

¶ The fact that ɓ impacts the mean of 
NLSe  (in 

equations (16)) enables reduction of the failure mode 

slope from 
ig ,0
 to 

iNLSg ,
, which lowers integrity risk.  

¶ Off-diagonal components of the covariance matrix 

ihP  also vary with ɓ so that the dark ellipse’s 

orientation can be modified. 

¶ However, ɓ causes the diagonal element of 
ihP  

corresponding to NLSe  to increase, which means that 

the dark ellipse is inflated along the e-axis in Fig. 6.  

This negative aspect will be accounted for in the 

integrity risk evaluation.  The increase in variance of 

NLSe  also explains that lowering integrity risk comes 

at the cost of a decrease in accuracy performance. 

 

 

 

HMI area

horizontal

HMI area

g0,5

?

5T
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Fig. 6  Failure Mode Plot of LS Versus NLS 

Estimator-Based RAIM, Assuming a Fault on SV 5. 

 

Figure 6 only considers one fault hypothesis 
5H . But, the 

estimator modifier vector ɓ must be determined to 

minimize the overall integrity risk, considering all 

hypotheses 
iH , for hi ,...,0=  as defined in equation (10).  

 

B. Multi-Dimensional Optimization (MDO). 

 

The problem of finding the 1)( ³-mn  vector ɓ that 

minimizes the overall integrity risk can be mathematically 

formulated using the bound HMIP  defined in equation (10) 

as:  HMIP
ɓ

min .  An equivalent expression is given by: 
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This multi-dimensional optimization (MDO) problem 

(i.e., finding the )( mn-  elements of ɓ) can be solved 

numerically using a modified Newton method (e.g., see 

[17]). The gradient and Hessian of the objective function 

in Equation (11) can be established numerically using 

procedures given in [17]. This process is again 

computationally intensive. Computational efficiency is 

addressed later in Section IV.  

 

The minimization process outputs an estimator modifier 

vector ɓ.  A failure mode plot is used again in Fig. 7 to 

analyze ɓ, but in contrast with Fig. 6, all six single-SV 

fault hypotheses are simultaneously represented.  In Fig. 

7, ellipses corresponding to the 10
-2

 joint probability 

density level are displayed with dashed black lines for the 

LS estimator (labeled DIRE LS), and with grey shadowed 

areas for the NLS estimator (labeled DIRE MDO because 

ɓ is obtained from a MDO). Figure 7 shows one ellipse 

for DIRE LS overlapping the HMI area, whereas none of 

the grey-shadowed ellipses for DIRE MDO does.  

 

LS estimator ( ɓ=0 ) 
optimal NLS estimator

 
Fig. 7  Failure Mode Plot Displaying all Single-SV 

Fault Hypotheses  



In this example, the integrity risk decreases from 4.7·10
-6

 

for the LS estimator to 3.6·10
-8

 using the DIRE MDO 

method. The price to pay for this integrity risk reduction 

is an increase in the vertical position estimate standard 

deviation from 1.49 m using DIRE LS to 2.02 m using 

DIRE MDO (further analysis of the positioning standard 

deviation is carried out in Section V).  

 

These results show that using a NLS estimator in RAIM 

can dramatically reduce the integrity risk.  The integrity 

risk obtained using DIRE MDO is deemed the lowest 

achievable risk, under the continuity risk constraint given 

in equation (12).  However, the multi-dimensional 

optimization process used to determine ɓ is extremely 

time intensive.  In Section IV, the DIRE MDO method is 

modified to reduce the computation load. 

 

IV.  PRACTICAL APPROACH TO NON-LEAST-

SQUARES ESTIMATOR DESIGN 

 

This section uses a parity space representation to establish 

an approximation of the optimal estimator modifier vector 

ɓ using a one-dimensional optimization (ODO) process 

instead of the multi-dimensional optimization (MDO) 

procedure described in Section III.  Further reduction in 

computation load is accomplished using an integrity risk 

bound (IB) rather than performing direct integrity risk 

evaluation (DIRE).  

 

A. One-Dimensional Optimization (ODO). 

 

The focus of this derivation is on the n  single-SV faults.  

Multi-SV faults are addressed in Section IV-B.  Under a 

single-SV fault hypothesis iH , the fault vector is 

expressed as: iii fAf = , where if  is the fault 

magnitude, and iA  is defined under equation (8). 

Substituting the above expression of if  for f  into 

equation (16) and simplifying the result, equation (16) 

becomes: 
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where  

 

  ɓɓ
T=2b   ,  i

T

i uubbr =,   with  bb ɓu =  (19) 

 

ii

TT

ii ff QAQA=* ,     i

i

TT

i

i

T

ig D== s
QAQA

As0
,0   (20) 

 

In the above equations, b and bu  respectively designate 

the magnitude and unit direction vector of ɓ.  Also, it was 

shown in [13] that 
ig ,0
 could be written as: 

iig D=s,0
, 

where 
iDs  was defined in the paragraph above equation 

(6). 

 

The optimal 1)( ³-mn  vector ɓ obtained using DIRE 

MDO is displayed in red in parity space in Fig. 8 for the 

example six-SV geometry introduced in Fig. 1.  Single-

SV fault lines are represented in dashed gray.  In parallel, 

consider the maximum fault mode slope }{max ,0
, . . . . ,1

i
ni

g
=

 for 

the LS estimator, which is shown in solid blue in Fig. 9 

(and corresponds to a fault on SV 5).  The fault line 

corresponding to this maximum slope }{max ,0
, . . . . ,1

i
ni

g
=

 is also 

represented in solid blue in Fig. 8.  
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Fig. 8  Comparison of DIRE MDO Vector ɓ Versus 

Worst-Case Fault Line Directions in Parity Space 
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Fig. 9  Failure Mode Plot Showing Failure Mode Lines 

for All Six Single-Satellite Fault Modes 

 



Let 
ju  be the unit direction vector in parity space of the 

fault line corresponding to }{max ,0
, . . . . ,1

i
ni

g
=

 (in this case, 

5uu =j
).  Fig. 8 shows that the direction of the optimal 

ɓ vector in parity space is very close to that of 5u . The 

same observation was made for many other satellite 

geometries.   

 

Few examples were found, where the optimal ɓ direction 

does not match 
ju .  These examples occur when the 

second largest failure mode slope approaches }{max ,0
, . . . . ,1

i
ni

g
=

. 

In these cases, the optimal ɓ-direction is somewhere 

between the directions of the two fault lines for these two 

dominating fault modes.  For most other geometries, the 

maximum fault slope is an outlier-slope, i.e., is much 

larger than the other 1-n  single-SV slopes.  Therefore, 

in the vast majority of cases, the direction of the optimal 

ɓ vector in parity space matches the direction of 
ju .  

 

It follows from the analysis in Fig. 8, that a reasonable 

simplification relative to MDO is to approximate the 

optimal ɓ vector as: 
juɓ b-=  , where i

ni
gj ,0

,. . . ,1
maxarg
=

= . 

(The minus sign is included so that only positive values of 

b need to be considered.)  The estimator modifier vector 

ɓ can now be determined by finding the value of b, 

which minimizes the integrity risk, i.e., by solving 

equation (17) over the scalar parameter b instead of over 

vector ɓ.  This is a one-dimensional optimization (ODO) 

process that can be performed using a straightforward line 

search routine.  

 

It is worth noting that an approximation of the optimal ɓ-

direction is sufficient to guarantee that the NLS estimator 

will perform equally or better than the LS estimator, 

because the search over b includes the value b=0, for 

which LS and NLS estimators are identical.   

 

Moreover, the search over b can be limited to ensure that 

the accuracy requirement is satisfied:  accuracy is directly 

related to the variance 2

NLSs  of NLSe  (in equation (18), 
22

0

2 bss +=NLS
).  For example, if the accuracy limit is 

noted ACC? , then the 95% accuracy criterion is: 

ACCNLS ?<s2 , which is equivalent to:  

2/12

0

2 )4/( sb -< ACC? .  

 

With this choice of bu  (as juu -=b ), an equivalent 

expression for the NLS estimator is obtained using 

equation (8):  

 

 zszs
T
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T

NLSx *0
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or equivalently,  

 

  zszs
T

j

T

NLSx D-= *0
ˆ b    where   jD¹ sbb /*  (21) 

 

Thus the minimization problem in equation (17) can fully 

be expressed in terms of scalars and vectors already used 

in SS RAIM: matrix Q  does not need to be computed. 

For example, 
i,br  in Equation (19) becomes 

)/(, iji

T

ji DDDD-= ssrb ss , and using equation (20), 
*if  can 

be written in terms of:  
i

T

ii

TT

i AsQAQA 0

2/1)( D=s .  

 

In an independent study soon to be published in [18], a 

similar choice was made for the NLS estimator design.  

The algorithm derivation in [18] is fully carried out in the 

position domain, which makes it barely recognizable from 

the above method.  But the fundamental underlying 

principle which, in our interpretation, steer the choice of 

bu , is identical.   

 

Figure 10 shows that, for the example used in Fig. 1 to 9, 

DIRE ODO matches DIRE MDO very closely. The 

integrity risk only increases from 3.6·10
-8

 to 5.1·10
-8

 for 

MDO versus ODO, which is still a dramatic reduction as 

compared to the 4.7·10
-6

 value obtained using DIRE LS. 

In addition, DIRE ODO is computationally much more 

efficient than DIRE MDO. Despite this improvement in 

run time, the DIRE method is still not fit for real time 

implementations, mainly because the process involves 

integration in equation (17) of the bivariate normal 

density functions of iɖ , for hi ,...,1=  (run-time will be 

quantified in Section V).  In response, an integrity risk 

bound (IB) is derived. 

 

DIRE MDO

DIRE ODO

 
Fig. 10  Failure Mode Plot Comparing DIRE MDO 

Versus DIRE ODO  

 



B. Integrity Risk Bounding Method (IB).  

 

In parallel to the minimization problem over the estimator 

modifier ɓ, the direct integrity risk evaluation (DIRE) 

method includes two other time-consuming steps: (a) the 

integration of the bivariate normal distribution of vector 
T

iNLSi q ][e=ɖ  in equation (17), and (b) the scalar 

search for worst-case magnitude if  expressed in 

equation (10).  Both points are addressed using integrity 

risk bounds (IB), which are looser than using DIRE, but 

are much faster to evaluate.  

 

First, it is worth reminding that the integration of bivariate 

normal distributions was needed to evaluate the integrity 

risk in equation (17) because 
NLSe  and 

iq  are correlated.  

To avoid dealing with bivariate normal distributions, a 

bound on the integrity risk in equation (10) is established 

using conditional probabilities as follows:  

 

( )

( )ä

ä

=

=

<>¢

ù
ù
ù

ú

ø

é
é
é

ê

è

ö
÷
õæ

ç
å <³

<>

¢

h

i

HiiiiNLS

i

h

i
Hiiii

iiiNLS

i

HMI

PTqfP
f

PfTqP

TqfP

f
P

0

0

||,||max

||

||,||

max

?

?

e

e

  (22) 

 

where ‘³’ designates a (scalar) multiplication.  It was 

shown in [13] that the bound 1)||(| =< iii HTqP  in the 

last inequality could be loose.  This upper bound is 

conventionally used in SS RAIM [10], [11] (although not 

explicitly), and is the price to pay to significantly reduce 

the processing time.  

 

Second, in order to evaluate the above expression 

independently of fault magnitude if , the estimation error 

for NLSx̂  in equation (21) is expressed as: 

 

  ( ) ( )( )i
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j

T

i

T
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T

j

T

NLS fvssvszss +-+=-= DDD **0 bbe  (23) 

 

where  

0s   is written as:  ii ssss -+= 00 ,   

iDs  is defined above equation (6) as:  ii sss -=D 0  

if    is defined above equation (18),  

*b    is defined in equation (21),  

0fs =i

T

i    under iH .   

 

The term ))(( * i

T

j

T

i fvss +- DD b  is a function of the fault 

if .  To eliminate this dependency, a new, sub-optimal 

detection test statistic is considered: 
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The variance of NLSiD  can be written as: 
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**

22 2 ji
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and the detection threshold for NLSiD  is defined as:  

NLSiiNLSi TT DD ¹ s .  Using 
NLSiD  instead of 

iq , substituting 

(24) into (23) and the result into (22), and using the 

condition in (22) (which is rewritten as 
NLSiNLSi TD<D || ), 

the following integrity risk bound is obtained: 
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It is worth noting that equation (26) can be evaluated for 

both single-SV and multi-SV faults, since all SS RAIM 

variables and parameters (including ie , iDs , and iDs ) 

were defined in Section II-C assuming that subsets of one 

or more measurements could simultaneously be faulted. 

 

Equation (26) is then exploited in the integrity risk 

bounding process using one-dimensional optimization, 

also called the ‘IB ODO’ method.  Scalar *b  is found by 

solving: 

 

 }{min
*

HMIP
b

 (27) 

 

If required, and as described in the paragraph above 

equation (21), the search over *b  can be limited by the 

accuracy criterion to the following range of values:  

jACC D-<¢ ssb /)4/(0 2/12

0

2

* ? . 

 

Given vector ɓ (expressed in parity space as 

jjuɓ D-= sb* ), the new detection test statistic NLSiD  

departs from the LS SS statistic iq  (or equivalently from 

iii q D=D s ).  In Fig. 11, the detection boundaries derived 

from NLSiD  (represented with a thick red contour) and iq  

(gray shadowed area) are compared in parity space, for 

the example satellite geometry presented in Fig. 1.  The 

difference in the resulting detection regions further 

explains that the integrity risk bound using this IB 

procedure is looser than using DIRE.  (Recall that iq  used 

in DIRE was shown in [5] and [6] to approach the optimal 

test statistic.)  But IB ODO requires significantly less 

computation resources than when DIRE MDO. This 

comparison is quantified in Section V. 



 
Fig. 11  Detection Region for LS SS Versus the 

Integrity Risk Bounding (IB) Method 

 

 

V.  AVAILABILITY AND COMPUTATION TIME 

EVALUATION 

 

This section aims at analyzing the integrity risk reduction 

and increase in processing time generated when 

implementing a NLS estimator as compared to using a LS 

estimator in SS RAIM.  The algorithms derived in 

Sections II to IV are evaluated in an example Advanced 

RAIM (ARAIM) application for vertical guidance of 

aircraft using dual-frequency GPS and Galileo.  The 

simulation parameters, which include ARAIM 

measurement error models, and LPV-200 navigation 

requirements (to support localizer precision vertical 

aircraft approach operations down to 200 feet above the 

ground), are listed in Table 1 and described in detail in 

[3].  In this analysis, two major differences with respect to 

the ARAIM error models are that constellation-wide 

faults are not accounted for, and that fault-free 

measurement biases are assumed to be zero.  These biases 

introduce application-specific complications whose 

treatment is not relevant to this paper.  To simplify the 

analysis, accuracy requirements were not included in the 

availability assessment (but can easily be incorporated in 

the ɓ determination process as described in Section IV).  

 

Example navigation requirements include an integrity risk 

requirement REQI  of 10
-7

, and a continuity risk 

requirement REQC  of 10
-6

.  The prior probability of 

satellite fault HiP  is assumed to be 10
-5

.  The alert limit ? 

is reduced from 35 m in ARAIM [3] to 10 m in this 

performance evaluation.  A ‘24-1’ GPS satellite 

constellation and a ‘27-1’ Galileo constellation are 

assumed, which are nominal constellations with one 

spacecraft removed to account for outages;  these example 

constellations are also described in [3].  Moreover, this 

analysis focuses on the vertical position coordinate, for 

which the aircraft approach navigation requirements are 

often the most difficult to fulfill.  

 

Figures 12 to 14 display availability maps for a 10 deg ³ 

10 deg latitude-longitude grid of locations, for 

GPS/Galileo satellite geometries simulated at regular five 

minute intervals over a 24 hour period.  Availability is 

computed at each location as the fraction of time where 

the HMIP -bound meets 
REQI .  In the figures, availability is 

color-coded:  white color corresponds to a value of 100%, 

black represents 80%.  Constant availability contours are 

also displayed.  The worldwide availability metric given 

in figure captions is the average over all grid points of the 

availability weighted by the cosine of the latitude, 

because grid point locations near the equator represent 

larger areas than near the poles. 

 

Figure 12 presents availability for the integrity risk 

bounding (IB) method using a LS estimator, i.e., using a 

conventional SS RAIM method [10], [11] (with optimal 

integrity risk allocation since a HMIP -bound is used rather 

than protection levels).  Then, Fig. 13 displays the 

availability provided by direct integrity risk evaluation 

(DIRE) using a one-dimensional optimization (ODO) 

process to determine the NLS estimator.  The DIRE 

multi-dimensional optimization (MDO) would probably 

have generated slightly higher availability, but the 

computation time to generate an availability map would 

have exceeded several months.  Thus, the 98.1% 

worldwide average availability value for DIRE ODO is 

our closest approximation of the best availability that can 

be reached using a NLS estimator.  Finally, the 

availability map for the computationally-efficient IB 

ODO method is shown in Figure 14.  Average availability 

using IB ODO is 96.7%, which does not quite reach the 

best achievable 98.1% availability, but is still much 

higher than the 92.6% value obtained using a LS 

estimator in Figure 12. 

 

Table 1. Simulation Parameters 

Description  

(standard deviations) 
Value 

SV clock and orbit 

error (URA) 

0.75 m 

(0.957 m for Galileo) 

Residual tropospheric 

error 
*
 

m
)sin002001.0(

001.1
12.0

2/12x+
 

Smoothed code 

multipath 
*
 

m53.013.0 10x-+ e
 

(lookup table for Galileo in [3]) 

Smoothed code 

receiver noise 
*
 

m43.015.0 9.6/x-+ e
 

*:  x is the satellite elevation angle in degrees. 
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Fig. 12  Availability Map for Integrity Risk Bounding 

Method (IB) Using a Least Squares Estimator (LS):  

Worldwide Weighted Average Availability is 92.6% 
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Fig. 13  Availability Map for Direct Integrity Risk 

Evaluation Using One-Dimensional Optimization 

(DIRE ODO):  Worldwide Weighted Average 

Availability is 98.1% 
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Fig. 14  Availability Map for Integrity Risk Bounding 

Using One-Dimensional Optimization (IB ODO): 

Worldwide Weighted Average Availability is 96.7% 

 

 

Average availability numbers are listed in Table 2 for 

conventional RAIM using a LS estimator (labeled IB LS), 

for the method giving the best achievable performance 

(DIRE ODO), and for the computationally-efficient 

approach (IB ODO).  The third column of Table 2 shows 

the inflation of the vertical position estimate standard 

deviation caused by the use of a NLS estimator rather 

than a LS estimator.  This factor 
0/ssNLS

 can cause the 

accuracy performance to diminish, but for all algorithms, 

the inflation factor averaged over all locations and 

satellite geometries remains lower than 1.03.  Also, as 

mentioned in Section IV, the accuracy requirement can be 

built into the NLS estimator design algorithm to ensure 

that the accuracy criterion remains satisfied when it is 

initially met for the LS estimator. 

 

The fourth column in Table 2 gives the inflation in 

computation time for each algorithm as compared to the 

IB LS computation time.  The reference IB LS run time is 

0.8 ms per geometry.  These numbers were generated on a 

computer equipped with a 3.40GHz Intel(R) Core(TM) 

i7-2600 processor and 8 GB RAM.  Computation times 

can be analyzed in parallel with worldwide average 

availability results in the second column of Table 2.  The 

DIRE ODO achieves 98.1% availability, but the run time 

inflation factor is almost 2000.  The IB ODO method 

accomplishes an effective compromise between run time 

and availability performance:  availability using IB ODO 

increases by 4.1% with respect to IB LS, but the run time 

is only about twice that of IB LS.  

 

VI.  CONCLUSION 

 

This paper describes new methods to minimize the 

integrity risk by design of the RAIM estimator, for 

applications in future multi-constellation global 

navigation satellite systems (GNSS). 

 

The first method based on direct integrity risk evaluation 

(DIRE), aims at minimizing integrity risk regardless of 

computation load, and provides a measure of the best 

achievable integrity performance.  This method is 

computationally expensive.  As an alternative, a second 

method based on integrity risk bounding, using one-

dimensional optimization (IB ODO) is developed using 

parity space representations and failure mode plots.  

Despite conservative assumptions in the integrity risk 

bounding process, IB ODO still significantly lowers 

integrity risk as compared to using a least-squares (LS) 

estimator, but also considerably reduces processing load 

with respect to DIRE.  

 

Table 2. Simulation Results 

 
Average 

availability 

Average 

0ssNLS  

Run time 

Inflation  

w.r.t. IB LS 

IB LS  92.6%  1 1  

DIRE ODO 98.1% 1.01 1889 

IB ODO  96.7% 1.03 2.4 

 



Performance analyses are carried out for an example 

aircraft approach application using multi-constellation 

Advanced RAIM.  For a given set of navigation system 

parameters, the worldwide average availability provided 

by IB ODO is slightly lower than the best achievable 

performance (evaluated using DIRE), but is substantially 

higher than using a LS estimator.  In addition, IB ODO 

does not significantly degrade the accuracy performance 

as compared to a LS estimator.  Finally, the IB ODO 

processing time is almost 1000 times shorter than for 

DIRE, and is only about twice that of a conventional LS 

SS RAIM algorithm, which may enable real time 

implementation in applications where computation 

resources are limited. 
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