RANGING ERROR OVERBOUNDS

FOR NAVIGATION INTEGRITY OF LOCAL AREA AUGMENTED GPS

BY

IRFAN SAYIM

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Mechanical and Aerospace Engineering
in the Graduate College of the
Illinois Institute of Technology

Approved JQ"&% PS}"&-’—

Adviser

g AR a1

S T
i,,{\’)g,&-‘@

Chicago, Illinois
May 2003



UMI Number: 3087857

Copyright 2003 by
Sayim, Irfan

All rights reserved.

®

UMI

UMI Microform 3087857
Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346



© Copyright by
Irfan Sayim

2003

il



ACKNOWLEDGEMENTS

First of all, I wish to express my sincere thanks to my advisor, Professor Boris
Pervan, for his general supervision, continuous encouragement, and insightful
instructions throughout this research here at IIT. Boris, you gave me not only the
opportunity to pursue this research, but also the confidence and the discipline to complete
it. Your door was always open for a brief talk or a difficult discussion. I feel very lucky

to have had you as my advisor.

Next, I would also like to thank my defense committee members, Professor Nair,
Professor Dix, Professor Kallend, and Professor Cesarone, for their careful review,

constructive suggestions, and valuable discussions of this dissertation.

I would like to thank the current members of the Navigation and Guidance
Laboratory, Moon-Beom Heo, Livio Gratton, Fang-Cheng Chan, Mathieu Joerger, Samer

Khanafseh, and former member John Andreacchi for their friendship.

My gratitude also goes to Dr. Sam Pullen, LAAS Project Manager at Stanford
University, for his constructive suggestions, and John Warburton from the FAA

Technical Center for his support in obtaining the LAAS Test Prototype data.

I would also like to thank the FAA LAAS Program Office and Gebze Institute of
Technology, Turkey, for their financial support during my graduate studies at IIT.

Lastly, I would like to express my hearty gratitude to my wife, Gunay, for her

patience, understanding, love and support, without which this thesis could never have

been possible.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. e
LIST OF TABLES (o e
LIST OF FIGURES ... e
LIST OF SYMBOLS AND ABBREVIATIONS ...
ABSTRACT .
CHAPTER

I. INTRODUCTION e e

) O 75 0 Yo L1 Tt (o) ¢ WA
1.2 Summary of Relevant Work ...
1.3 Contributions of This Research ...,

II. LOCAL AREA AUGMENTATION SYSTEM REVIEW ..................

2.1 Introduction ...l F
2.2 The Local Area Augmentation System (LAAS) ...
2.3 LAAS Navigation Integrity Allocation ................ccooeviiiie.
2.4 LAAS Navigation Performances ...
2.5 GPS/LAAS SIS Accuracy Requirements ~ ........ccooiiiiiiiiiiinn
2.6 CONCIUSION ottt

III. GAUSSIAN RANGING ERROR ...

I B 1115 oY L 1er3 T} | E PO
3.2 Sigma Sensitivity Analysis ...
3.3 Correlation Sensitivity — .....ooeeiiiiiiiiiii
3.4 Worst Case Sensitivity ........c.oveiiiiiiiiiiiiiiiiiiie
3.5 Integrity Risk Tolerance .. ...cooiiiiiiiiiiiiiii,
3.6 ConcCluSION oot

IV. NON-ZERO MEAN GAUSSIAN RANGING ERROR  ...............

4.1 IntroduCtion .......oieiiiiiiiiiii i e
4.2 Bounding Concept ..
4.3 Mean Bounding For LAAS ..
4.4 Unconditional Mean Bounding ...

v

Page

12

12
12
25
31
33
37

38

38
38
52
60
62
64

65

65
65
67
72



CHAPTER Page

4.5 Conditional Mean Bounding — ........ociiiiii 75

4.6 Summary of Mean Bounding Models ................cooooii 77

4.7 Relationship Between Biases and Alert Limits  ........................ 78

4.8 CoNCIUSION  1.uitietie it e 81

V. NON-GAUSSIAN RANGING ERROR ......ccociiiiiiiiiiiiii, 82

5.1 INtrodUCHION  ...ouuiniit ittt 82

5.2 Ground Reflection Multipath ... 83

5.3 Candidate Models 91

5.4 Summary of Error Models ... 99

5.5 CoNCIUSION  ooniiii e 100

VI. DATA QUANTIFICATION METHODOLOGY .....ccoiiiiiiiiiiiininnn. 101

6.1  INtrOdUCHION ..ottt et et e e aeeaeeas 101

6.2 Ranging Error Characteristics ..........cceeieiiiiiiiiiiiiiiiiiiiinans 102

6.3 Expanding Bin Concept  .....cc.oiiiiiiiiiiii 104

6.4 Sigma Computation ...l 106

6.5 Benchmark Test for EB Method.......cc......oooiiiiiiiiiiiiin, 108

6.6 Correlation Between Receivers ... 110

6.7 Temporal Variation of Error ... 112

6.8  CONCIUSION oottt e 114

VII. SIGMA SYNTHESIS AND EXPERIMENATAL RESULTS ... 115

7.1 INErOdUCHION  .eeeeii it 115

7.2 Synthesis of Broadcast Sigma ... 115

7.3 An Example for LTP Broadcast Sigma  ........c..cooviviiiiniiinnnn. 119

74 ConCluSION  ..oiiiii i 127

VIII. CONCLUSIONS e 128

8.1  ConClUSIONS  .euiintiitii i 128

8.2 Recommendations and Future Work ... 130

APPEN DX 133
A. ALTERNATIVE CANDIDATE MODELS

FOR GROUND REFLECTION MULTIPATH .........ccooiiiiiiiiinn. 133

B. VALIDATION OF EB METHOD = .., 138

BIBLIOGRAPHY e 150



LIST OF TABLES

Table

2.1 Missed Detection Multipliers ............

2.2 Fault-Free Detection Multipliers — ......

.......................................

2.3 LAAS Performance Requirements For Precision Approach ...............

2.4 GPS/LAAS SIS Accuracy Requirement

2.5 Airborne Accuracy Requirement.........

3.1 Sigma Buffer Factor for H,  .........

3.2 Sigma Buffer Factor for H,  .........

3.3 Correlation Buffer Parameters for H,

3.4 Correlation Buffer Parameters for H,

.......................................

.......................................

3.5 Worst Case Sigma/Correlation Buffer Parameters for H

(Results for Category land M =3)

....................................

4.1 Summaries of Mean Bounding Models For LAAS ...

5.1 Summary of Non Gaussian Error Model

7.1 Correlation Values  ...ooovvviiinnnnn...

.......................................

A.1 Summary of Alternative Non Gaussian Error Model .....................

B.1 Data Generation for Test of EBand MEB ...

B.2 Summary of Results of EB and MEB

vi

33

34

35

49

51

58

60

62

78

100

122

137

140

141



Figure
1.1
2.1
2.2
2.3
2.4
2.5

3.1

3.2

3.3

3.4

3.5
3.6
3.7
3.8
3.9
3.10

3.11

The Global Positioning System (GPS)

LIST OF FIGURES

Local Area Augmentation System

LAAS Capability in GPS

GPS Ranging Error Observable

CMC and SCMC Versus Time

LAAS Integrity Allocation Diagram

.................

.........................

.........................

.........................

.........................

H, Integrity Risk Sensitivity to © - Variations, 24 SV Case.

(o -Varied on All SVs in view)

H, Integrity Risk Sensitivity to © - Variations, 24 SV Case.

(o -Varied on Worst Case SV Only)

.........................

H, Integrity Risk Sensitivity to ¢ - Variations, 24 SV Case.

(Upper Bound Curves From Figure 3.1 and Figure 3.2)  ............

H, Integrity Risk Sensitivity to © - Variations, 22 SV Case.

Probability Distribution for 6/0,
Probability Distribution for&/c,

Probability Distribution for6/c

H

1

H

1

0

(Upper Bound Curves)

Integrity Risk Versus 6/0,
Integrity Risk Versus 6/0,
Integrity Risk Versus /¢

Integrity Risk Versus 6/0,

................................................

r_gnd,;

r__gnd,

r_gnd;

_gnd;

r_gnd,

- gnd;

for 6/,

for 6/(5p

v _gnd,;

(Relative Error)

(Relative Error)

vii

=09, n, =20

_gnd, T

.....................

=0.7,n, =20 ...

.........................

.....................

13

14

22

23

26

42

43

43

44

45

46

47

48

48

50

51



Figure

3.12

3.13
3.14

3.15

3.16

3.17
3.18
3.19

3.20
3.21
4.1

4.2

5.1

5.2

53
54
5.5

5.6

H, Integrity Risk Sensitivity to p - Variations, 22 SV Case.
(Upper Bound Curves) — oiiiiiiiiiiiiii e

Probability Distribution for pgiven r=0.3, n, =20 ...l
H, Integrity Risk Versus r ...

H, Integrity Risk Sensitivity to p - Variations, 22 SV Case.
(With Correlation Buffering) — ....ooiiiii

H, Integrity Risk Versus r
(With Correlation Buffering) ...

Minimum p~ for 5% H, Integrity Risk Tolerance  ........................
Minimum p” for 5% H, Integrity Risk Tolerance  ........................
H, Integrity Risk Sensitivity to ¢ - Variations, 22 SV Case ~ ............

Sigma Buffer Factor Versus Number of Samples ~ ........................
Correlation Buffer Factor Versus Number of Samples .....................
Gaussian Distributions Mean Bounding Concept ~ ......ccoceiiiiinennn.n.

Actual VPL,; vs. Computed VPL, with Depleted Constellation
(22 out of 24 Satellites)  .ooiiiii

Ground Reflection Multipath ...

Ground Reflection Multipath Attenuation with Respect to Antenna Height
(24 Satellites at Chicago, O’Hare Airport) ..ccciviviiiiiinnn..

Multipath Error Envelope Versus. Multipath Delay — ...............coi.
Probability Density for Random Variable z ..................o
Actual PDF Approximation to a Conservative PDF  ..................... ..

Convolution of Nine Model-1 Sources with Gaussian Sources
Compared with Convolution of Nine Gaussian Sources  ............

viii

Page

53

55

56

57

57

58
59
60

62
63

69

80

84

85
87
90

94

94



Figure
5.7
5.8

59

6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2

73
7.4
7.5
7.6
7.7
7.8
Al
A2
B.1

B.2

B.3

Overbound of Nine Model-1 Sources with Gaussian Sources  ............

Convolution of Twelve Model-1 Sources with Twelve Gaussian Sources. ..

Size of Product bc Versus Satellite Elevation Angle for

Three Different Antenna Heights ...
Sketch of Error Variation within Bins ..............c.o
Sketch of Ranging Error Characteristics ...........ocoviiiiiiiiiniiinin. ..
Sketch of EB CONCEPt  oniiniiiiii i
Flow Chart for Sigma Computation — .......cooiiiiiiiiiiiiiiiiin
Sigma Generation for Nonstationary Process ...
Performance Comparison of EB Method ...
Sigma of EB Method for EachRR ...
EB Sigmas (Individual and Composite)  ......c.ccooviiiiiiiiiiiiiiinn...
CDF Oyerbound of EB Sigmas L TR R PR TReY
EB Sigma Inflated by Correlation Effects ...,
EB Sigma Inflated by Correlation and Temporal Variation Effects .........
Final Sigma (Combined Sigma from Data and Multipath) ..................
Final Sigma Result Versus Specifications (EB) ................ocoil

Final Sigma Result vs. Specifications (MEB) ...,

Normalized Ground Multipath Error Distribution due to Model A.1

Gaussian Overbounding of Model A.1 ...
Serial Correlation Versus Nonstationarity ...........coocveiiiiiiiiiinninnnn..

Deterministic Function (k) for Nonstationarity — .................oooennene.

Deterministic Function ( k, ) for Nonstationarity — ..............cocoieninen

X

Page
96

97

99
101
102
106
107
109
109
120

121
121
123
123
124
124
127
134
135
139

142



Figure
B.4
B.S
B.6
B.7
B.8
B.9

B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22

B.23

Page
CASE-1 White Noise from a Normal Distribution ........................... 143
CASE-1 Sigmas Versus Sample Index ... 143
CASE-1 EB Values Versus Sample Index .............cooooiiiiin, 143
CASE-2 White Noise from a Normal Distribution ........................... 144
CASE-2 Sigmas Versus Sample Index ... 144
CASE-2 EB Values Versus Sample Index ..............cooiiiiin 144
CASE-3 White Noise from a Normal Distribution ........................... 145
CASE-3 Sigmas Versus Sample Index ... 145
CASE-3 EB Values Versus Sample Index ..............ooon, 145
CASE-4 Colored Noise with Filter .................... 146
CASE-4 Sigmas Versus Sample Index ... 146
CASE-4 EB Values Versus Sample Index ... 146
CASE-5 Colored Noise with Filter .............cooiii 147
CASE-5 Sigmas Versus Sample Index .o 147
CASE-5 EB Values Versus Sample Index ...............cooin, 147
CASE-6 Colored Noise with Filter (Two Different Time Constant) ...... 148
CASE-6 Sigmas Versus Sample Index ... 148
CASE-6 EB Values Versus Sample Index ...............ooooiin, 148
CDF Overbound of EB with Standard Normal ....................oe. 149
CDF Overbound of MEB with Standard Normal ........................l 149



Symbol

o

o>

Y pr_gnd
pr_air
Gpr#iono

pr__tropo

pr_res

LIST OF SYMBOLS AND ABBREVIATIONS
Definition

Total Positive Correlation Between Reference Receivers
Multipath Delay

Standard deviation of True Error

Normalized Multipath Error

Inflation Factor of Temporal Variation
Mean Value
Estimated Correlation Coefficient Between RRs

Sigma Pseudorange Ground (Broadcast Sigma)

Standard Deviation of Aircraft Pseudorange Error

Standard Deviation of Error Associated with Ionospheric Uncertainty
Standard Deviation of Error Associated with Tropospheric Uncertainty

Standard Deviation of Residual Error (Tropospheric and Ionospheric)

Carrier Pseudorange Error Measurement

Number of Independent Samples for Receivers Correlation Inflation
Number of Independent Samples for Sigma Inflation

Sample Index

Gaussian Multiplier for Fault Detection
Gaussian Multiplier for Fault Free Missed Detection

Gaussian Multiplier for Missed Detection

X1



Symbol

Definition
Computed Correlation Coefficients Between RRs
Satellite Azimuth Angle
Carrier-to-Noise Ratio (dB-Hz)
Satellite Elevation Angle
Geometry Matrix

Hypothesis Assume All Reference Receivers Faulty Free

Hypothesis Assume One Reference Receiver Faulty
Number of Reference Receivers

Code Pseudorange Error Measurement

Smoothed Pseudorange Error

Projection Matrix

Weighting Matrix

xii



Abbreviation Definition
A/C Aircraft
AAD Airborne Accuracy Designator
ACF Autocorrelation Function
CDF Cumulative Distribution Function
CMC Code Minus Carrier
D/U Amplitude of reflected signal relative to direct
DGPS Differential GPS
DH Decision Height
DLL Delay Lock Loop
DMP Diffuse Multipath
DOD Department of Defense
EB Expanding Bin
EUROCAE European Organization for Civil Aviation Equipment
FAA Federal Aviation Administration
GAD Ground Accuracy Designator
GBAS Ground Based Augmentation System
GPS Global Positioning System
GRMP  Ground Reflection Multipath
HAT Height Above Threshold
HMI Hazardous Misleading Information
HZA High Zenith Antenna

11D Independent and Identically Distributed

Xiii



Abbreviation

ILS

L1

L2

LAAS

LAL

LGF

LPL

LTP

MASPS

MEB

MLA

MOPS

NMP

NSE

PDF

PL

PRN

RF

RMS

RSS

Definition
Instrumental Landing System
Link-1 GPS signal transmitted at a frequency of 1575.42 MHz
Link-2 GPS signal transmitted at a frequency of 1227.60 MHz
Local Area Augmentation System
Lateral Alert Level
LAAS Ground Facility
Lateral Protection Level
LAAS Test Prototype
Minimum Aviation System Performance Standards for the LAAS
Modified EB-method
Multipath Limiting Antenna
Minimum Operational Performance Standards for GPS LAAS
Normalized Multipath Error
Navigation Sensor Error
Probability Density Function
Protection Level
Pseudo Random Number
Radio Frequency
Root Mean Square
Reference Receiver

Root Sum Square

Xiv



Abbreviation Definition
RTCA  Radio Technical Committee for Aviation
RV Random Variable
SBAS Space Based Augmentation System
SCMC  Smoothed Code Minus Carrier
SIS Signal In Space
SV Space Vehicle
VAL Vertical Alert Limit
VDB VHF Data Broadcast
VHF Very High Frequency
VPL Vertical Protection Level

WAAS  Wide Area Augmentation System

XV



ABSTRACT

The use of Differential GPS (DGPS) in aviation has been especially attractive in the
past decade because of its potential to provide the means for satellite-based aircraft
navigation spanning all aspects of flight, from takeoff to touchdown, with low cost and
high availability. While this has been an inspiring goal, serious technical obstacles exist,
the most difficult of which are related with navigation integrity for aircraft precision
approach and landing. For example, for Category I precision approach, it is required that
integrity risk (probability of hazardously misleading navigation information) never

exceed 1078

The Local Area Augmentation System (LAAS) is the DGPS architecture standard
under development by the Federal Aviation Administration (FAA) to provide precision
approach and landing navigation for civil aircraft. Navigation integrity risk for LAAS
will be managed at the aircraft via the computation of Protection Levels, which are
position error bounds within which navigation integrity is to be ensured.  Existing
standardized algorithms for the generation of the protection levels implicitly assume
zero-mean, normally distributed ranging error distributions. Unfortunately, while the
assumed error model is likely consistent with the effects of certain error sources (receiver
thermal noise and diffuse multipath), it is widely understood that significant remaining
errors, such as ground reflection multipath and systematic receiver/antenna errors, cannot

be directly modeled by zero-mean normal distributions.

xvi



In this dissertation, the critical issues concerning establishment and sufficiency of
overbounding ranging error distributions are addressed in detail. These include:
quantification of the sensitivity of integrity risk due to statistical uncertainty; derivation
of theoretical bounding models for non-zero-mean error sources; derivation of new
bounding distribution models for non-gaussian ground-reflection multipath error;
quantification and compensation for the effects of seasonal variation of multipath error;
development, implementation, and testing of a new, adaptive binning algorithm to
conservatively accommodate non-stationary and time-correlated empirical satellite

ranging error data.
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CHAPTER1

INTRODUCTION

1.1 Introduction

The use of differential GPS (DGPS), [Teasley80, Beser82], in aviation has been
especially attractive in the past decade as seamless satellite-based aircraft navigation,
spanning all aspects of flight, from takeoff to touchdown, may now be possible with low
cost, and high availability. While this has been an inspiring goal, serious technical
challenges exist in the development of GPS-based navigation systems for aviation. The
most difficult challenge arises from the severe requirement of navigation integrity for
aircraft precision landing. In response, the central focus of this research is on the

integrity of satellite-based navigation for the precision landing of aircraft.

1.1.1 The Global Positioning System. The Global Positioning System (GPS) is a
satellite-based, all-weather radionavigation system developed and maintained by the
Department of Defense (DOD) to provide precise positioning to unlimited users on the
globe (see Figure 1.1). It consists of a nominal constellation of 24 satellites in 12-hour
orbits (approximately 20,000 kilometers altitude) distributed over six orbital planes
inclined at 55 degrees. The constellation provides at all times at least four satellites

visible from anywhere on Earth’s surface. Each satellite broadcasts a highly accurate

* Corresponding to references in the Bibliography



ranging signal and its own orbital parameters (ephemerides) that will enable the user to

calculate the position of each satellite at the time of transmission of the signal.

Figure 1.1 The Global Positioning System (GPS)

The signal consists of an L-band carrier, modulated with a pseudorandom noise (PRN)
code and a data stream, which provides civilian users with easy access to the GPS signal.
It also includes an additional ranging code, known as P-code, which provides military
users precise positioning. A user who receives ranging signals from four or more
satellites can solve for the three components of its position as well as deviation of its

receiver clock from GPS system time.

1.1.2 Differential Positioning. While standalone GPS positioning (for both civil
and military users) suffers from many error sources such as satellite clock, atmospheric,
orbital, multipath, and receiver-related errors, the elimination of most of these errors is
possible using differential positioning (DGPS). With DGPS, a reference receiver is

placed at a precisely known location in the near-vicinity of the user. Then the



measurements collected by the reference receiver are subtracted from the computed
distance of the satellite, which is calculated based on satellite ephemeris data, to form
differential corrections. These corrections are then broadcast to local users to provide a
more accurate differential position solution. Common errors between user and reference
(usually associated with the satellite or space segment) are generally eliminated because
those errors are highly spatially correlated between the two receivers (reference and
user). Uncommon errors between reference and user (usually associated with receiver

and local signal disturbances) will remain.

1.1.3 GPS For Civil Aviation. In the early 1990s, the Federal Aviation
Administration (FAA) developed a plan to make satellite-based navigation technology
available for use in the National Aerospace System (NAS). This plan defines a transition
to GPS-based services. The transition is consistent with European Organization for Civil
Aviation Equipment (EUROCAE) and International Civil Aviation Organization (ICAO)
commitments to preserving the Instrumented Landing System (ILS) and transitioning to

satellite-based navigation [MASPS98, Braff98, and Raymond98].

The stringent level of GPS-based navigation performance required for civil aviation is
to be realized via two DGPS augmentation architectures currently under development.
These are the Wide Area Augmentation System (WAAS) and the Local Area
Augmentation System (LAAS). WAAS is a nationwide implementation, which collects
satellite signals received by distributed ground stations throughout the NAS and transmits
information from these signals to a master station. The WAAS master station monitors

GPS satellites in view to ensure that each satellite is transmitting a reliable signal and



also estimates satellite clock, orbit, and other errors. The LAAS, internationally known
as the Ground Based Augmentation System (GBAS), is a local area differential satellite
navigation architecture. Because it is specifically designed to support civil aircraft
precision approach and landing, it is more accurate than WAAS for users (aircraft) within
the airport terminal area. The LAAS broadcasts a single correction for each satellite that
accounts for all correlated (common) errors between a GPS reference receiver located on
the airport property and local airborne users. A comprehensive review of the LAAS is

given in Chapter 2.

1.1.4 LAAS Navigation Integrity. While the LAAS promises great practical benefit
(all-weather precision approach and landing to all runways, simpler siting than ILS,
services for terminal taxi and departure, etc.), a number of significant technical
challenges have been encountered in the development of the architecture. In general, the
most difficult of these challenges are associated with the stringent requirements for
navigation integrity. For Category I precision approach, the probability of an undetected,
hazardous navigation anomaly, known as an “integrity risk,” is required to be lower than
107*. This research is focused on critical problems concerning the quantification and

mitigation of integrity risk within the LAAS system.

The LAAS integrity risk is nominally quantified at the aircraft via the computation of
Vertical and Lateral Protection Levels (termed VPL and LPL, respectively). These
equations define aircraft position error upper bounds within which navigation integrity is
to be ensured. The prescribed algorithms for the generation of these protection levels

implicitly assume zero-mean, normally distributed fault-free error distributions for the



pseudorange corrections. The corrections are generated at LAAS Ground Facility (LGF)
from the average of multiple reference receivers’ pseudorange measurements and
broadcast to the aircraft for a highly precise position solution. The standard deviation of

broadcast correction error is assumed to be equal to o, for each satellite. The value

r_gnd

of ¢ is also generated at LGF and broadcast to aircraft along with the corrections

pr_gnd

themselves. Regardless of true broadcast correction error distribution, o, ., must

represent a normal distribution standard deviation value for the correction error. While
the assumed error model is likely consistent with the effects of thermal noise and diffuse
multipath (see Section 2.2.3), it is widely understood that remaining errors such as
ground reflection multipath and systematic reference receiver/antenna errors are not
necessarily reliably modeled by zero-mean normal distributions. Therefore, to ensure
that the computed values of VPL and LPL at the aircraft are meaningful and that integrity
risk is properly managed, special care must be taken by the LGF in the establishment of

the broadcast pseudorange correction error standard deviation (G, ., )-

The broadcast o must account for all true error sources associated with ground

v _ gnd
broadcast corrections for each satellite because ¢, ,,, is used for the transformation of

ranging error uncertainty to the position domain via Protection Levels for the user’s
satellite geometry. Furthermore, it is assumed that a normal distribution with the standard

deviation of o, overbounds the true (unknown) error distribution in the tails. This

r_gnd
means the proper quantification of integrity at the aircraft can only be ensured by the

proper establishment of G, ., -



In this research, major unresolved issues concerning the establishment of ¢ are

pr_gnd
addressed. These include the definition of a sufficient algorithm by which empirical error
data may be processed to ensure spatial stationarity of error, quantification and
compensation for the effects of seasonal variation of error, and a methodology to account
for potential non-gaussian and non-zero mean gaussian error sources. For normally
distributed errors such as receiver thermal noise and diffuse multipath, standard
deviations can be estimated using experimental data alone. In this case, however, it is
still necessary to account for the additional integrity risk incurred by statistical
uncertainty (due to finite sample size) in the knowledge of reference receiver error
standard deviation and error correlation between multiple reference receivers. In this
regard, a detailed methodology has been developed for the definition of minimum
acceptable inflation parameters for the sample standard deviation. (The inflation
parameters are functions of the number of samples available and the sample correlation
coefficient.) However, in order for such an empirical process to be applied, it is first
necessary to define a proper method to collect data into spatial bins prior to sigma
estimation. While large bin sizes are desired to maximize sample size (to limit required
inflation factors), bin size is ultimately constrained by the need for spatial stationarity of
all data within the bin (i.e., all error data within a bin must have the same underlying
distribution). The quantitative resolution of this critical tradeoff is one of the major

contributions of this research.

The effects of seasonal variations in pseudorange correction error (in particular

multipath) must also be accounted for in the broadcast o, However, it is clearly

r_gnd *



impractical to collect a full-year span of data (prior to commissioning) for each LGF to
account for such effects. Therefore, archived error data collected at the LAAS Test
Prototype (LTP) facility at the W. J. Hughes FAA Technical Center is used to define a

baseline LGF model for seasonal variation in G The observed LTP temporal

r_gnd °
variation is used to define a common standard inflation factor for use in the establishment

of o in future LGF installations until sufficient site-specific data is collected.

pr_ gnd

Because ground multipath error is not necessarily normally distributed, empirically

computed (and inflated) values of & are not sufficient to guarantee overbounding of

pr_gnd
the total LGF ranging error. Furthermore, it is impossible to rely on empirically
constructed distributions (e.g., error data histograms) alone to define the nature of the
underlying error distribution because little or no empirical data will exist in the ‘tails’
(which are of greatest interest in LAAS).' Therefore, theoretical approaches are also
emphasized in this research to incorporate ground reflection multipath effects into

o

pr_gnd *

For theoretical solutions, in the case of non-gaussian error distributions, position
domain bounding must be specifically addressed because a gaussian bounding that holds
in the range domain does not guarantee similar bounding in the position domain. The
position domain bounding can, however, be verified by convolution of ground range error
distributions. The procedure is numerically intensive but is necessary to establish
overbounding gaussian distributions. Non-symmetric (with non-zero mean) distributions

are even more difficult to bound in the position domain. The existence of a mean



requires the broadcast (ground) sigma bound to be a function of both ground-based and
aircraft ranging error statistical parameters. Because all these parameters are not known

by the LGF, the mean bounding problem presents a serious practical challenge.

The ultimate goal of this work is to define a sufficient methodology for the

establishment of the LAAS broadcast o Neither theoretical approaches nor

r_gnd *
empirical error data alone are adequate in this regard. The final broadcast pseudorange
sigma will be a result of both elements. In this thesis, we introduce a practical way to

synthesize the empirical and theoretical elements to quantitatively establish o, for

_gnd

LAAS.

1.2 Summary of Relevant Work

Despite the rather impressive accomplishments and efforts to date, the fundamental
goal of ranging error overbound under severe integrity requirements has not been
achieved in previous work. Most importantly, proper processing for quantification of
broadcast sigma directly from data has not yet been addressed in the literature.
However, important related work in the area of GPS-based navigation integrity, is

selected and summarized here. This information is sorted in three groups as follows:

1) Navigation Integrity for Aviation, LAAS Architecture, and Specifications: In 1996,
Pervan provided in-depth study of navigation integrity using GPS carrier phase
measurements and ground-based pseudolites for aircraft precision landing. Prototype

algorithms and performance was verified after 110 successful automatic landing of



Boeing 737 [Pervan96]. Liu, in 1997, provided a detailed overview of the LAAS SIS
‘signal-in-space’ integrity monitoring system, explained the theoretical issues concerning
derivation of protection level computation algorithms, and verified the theoretical
analysis by simulation [Liu97]. Enge, in 1999, described the overall LAAS architecture,
addressed the fundamental issues regarding accuracy, integrity and continuity, and
discussed the use of LAAS for all categories of precision approach and landing [Enge99].
In 2000, McGraw et al. detailed the background of the derivation of LAAS pseudorange
error accuracy models for the purposes of predicting service availability. These models
are used as a common basis for setting LAAS performance requirements/specifications

and to develop the test criteria [McGraw00].

2) Bounding Efforts for Ranging Error: In 1996, Braasch provided a comprehensive
study of the characteristics of multipath error in the precision approach and landing
environment [Braasch96]. Enge, [Enge99], examined the effects of multipath on code
phase measurements and then developed bounds for code phase error due to multipath.
In 2000, DeCleene studied ranging error distribution unimodality, symmetry, and
overbounding conditions for the LAAS position domain integrity requirement
[DeCleene00]. Shively, also in 2000, proposed a ranging error overbound model with

Gaussian core/Laplacian tail distribution [Shively00].

3) Multipath Mitigation Effort: Brenner et al., in 1998, used experimental data to
calibrate a deterministic signal model of set of uniformly distributed point detractors for

the examination of the properties of diffuse multipath [Brenner98]. Counselman showed
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that multipath rejection with a three-element vertical array antenna could be better than a

conventional ground plane antenna [Counsel99].

1.3 Contributions of This Research

The main objective of this dissertation is the development of a complete and rigorous

methodology for LAAS broadcast sigma establishment to ensure the stringent navigation

integrity required for aircraft precision approach and landing. This is the first in-depth

effort available for calculating broadcast sigma in the literature to date. Specific

contributions were made in the following areas:

1.

The sensitivity of navigation integrity risk was investigated and quantified with
respect to the statistical uncertainty in the knowledge of reference receiver error
standard deviation and correlation between multiple reference receivers. A
detailed methodology was presented to define the minimum acceptable inflation

parameters for the value of G, broadcast to the aircraft. This work implicitly

r_ gnd
addressed the gaussian error structures associated with receiver thermal noise and

diffuse multipath (Chapter 3).

A method for mean bounding was developed to: 1) account for the existence of
non-zero means in gaussian distributions and 2) bound non-symmetric
distributions (non-gaussian) in the tails after multiple convolutions in the position

domain (Chapter 4).
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3. A linearized multipath error model was developed. Based on the receiver/antenna
performance and signal-tracking algorithm, two candidate ground reflection
multipath error distributions were developed to bound the true non-gaussian error

distribution theoretically (Chapter 5).

4. An analysis of seasonal variation of error was performed based experimental data
collected at the FAA Technical Center LAAS Test Prototype. This was
accomplished by processing an archived one-year-span of error data. The result is
used as a basis for inflation of the short-term sigma to account for uncertainties
due to slow (seasonal) variation of the error due to environmental changes

(Chapter 6).

5. An adaptive spatial method known as Expanding Bin (EB) was developed to
estimate sigma from data by accounting for existing nonstationary and serial
correlation properties of ranging error data. The method guarantees the maximum
obtainable sigma at any given time/elevation. It is also applicable for potential

use in nonstationary parameter estimation in other applications (Chapter 6).

6. All of the above methods were applied to actual LTP data, and a synthesized
experimental representative result for broadcast sigma was obtained. The result
was used to test navigation accuracy specifications as defined in [MASPS98]

(Chapter 7).
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CHAPTER II

THE LOCAL AREA AUGMENTATION SYSTEM REVIEW

2.1 Introduction

This chapter provides an overview of LAAS, the pseudorange error observable,
carrier-smoothed code filter, and generation of ground-broadcast correction values. It
then follows with the integrity related issues such as protection levels, and specifications

regarding accuracy requirements of ground and airborne signals.

2.2 The Local Area Augmentation System (LAAS)

2.2.1 The LAAS. The LAAS is a C/A (Coarse/Acquisition) Code-based differential
GPS architecture designed to provide navigation services for civil aviation users during
precision approach and landing. As shown conceptually in Figure 2.1, it consists of three
components. These are: 1) The Space Segment (GPS satellites), 2) The LAAS Airborne
Subsystem (users), and 3) The LAAS Ground Facility (LGF). The LGF consists of a set
of (two to four) high quality GPS reference receivers placed at precisely known
(surveyed) locations on the airport property. Ranging measurements from all satellites in
view are collected by the reference receivers and passed to a processing unit which
smoothes the measurements and generates a differential correction for each satellite. The
corrections from all the reference receivers are averaged to form a composite ranging

correction (one for each satellite) that is then uplinked, over a VHF data broadcast signal
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transmitted in the 108.0-117.975 MHz band, to the airborne receiver. The airborne
receiver applies the ranging corrections to its own satellite ranging measurements, thus

enabling a highly accurate position solution.
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Figure 2.1 Local Area Augmentation System

The basic concept of LAAS is to eliminate the common errors between reference
station and airborne measurements and to provide integrity-related information to aircraft
during final approach. After elimination of common errors, the position accuracy
improves greatly. For example, Code-based DGPS provides ~1 meter (95% probability)
level positioning accuracy as shown in Figure 2.2 as compared to standalone GPS at ~20

meter level accuracy. The integrity improves as well in comparison to standalone
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positioning since many types of space segment errors are successfully removed by

DGPS.

GPS

Worldwide
Applicability

Code DGPS {LAAS)

—

Carrier DGPS

—

Local Area
Applicability

1cm 10 cm im 10m 100 m

Figure 2.2 LAAS Capability in GPS

2.2.2 LAAS Positioning. In LAAS, code measurements are obtained from at least
four satellites in view, passed trough a carrier-smoothing filter (to minimize noise), and

then used in basic linearized DGPS code position solution as:

y=Gx+¢g 2.1)

where y ,, is the measurement vector, N is the number of satellites in view at the time

of position estimation (N >4), €, is a vector of the measurement error, X, is the

state vector (three position components plus the time component), and G is the

observation matrix defining the direction cosine line of sight vectors pointing from the
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airborne receiver antenna to the satellites with an augmentation value of 1 for the clock.

Thus,

cosE, cosA, cosE;sinA, sinE, 1
G= : : : : (2.2)
cosE cosA, cosE sinA, smE, 1

where, A and E are azimuth and elevation angle a satellite respectively. The weighted

Least Square Estimate of states x is given as follows:

% =(G"WG) 'G"Wy = Sy (2.3)

where,

S=(G"WG)'G"W 2.4)

S . 18 also called the “projection matrix,” as it projects the pseudorange domain error

into the position domain. The weighting matrix, W, ,,, is a covariance of the total

estimated pseudorange error (ground broadcast and aircraft together) seen by aircraft.

c,, O 0
0 o’ e 0

Wh=[ee']=| . Pz . : : (2.5)
0 0 c’
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The composite pseudorange measurement errors for the GPS/LAAS Signal-In-Space
(satellite signals and broadcast reference data collectively) are formed at aircraft for an

arbitrary satellite by:

o =0’ +0’ +0? (2.6)

pr,n pr_gnd,n pr_air,n pr_res,n

where, © is the standard deviation of broadcast correction error and associated with

pr_gnd

the LGF pseudorange measurements, © is the standard deviation of airborne

pr_air

pseudorange error, and © is the standard deviation of residual pseudorange errors not

pr_res
directly attributable to ground or airborne (such as ionospheric and tropospheric
decorrelation). All these standard deviations are assumed to be parameters of normal

distributions with zero means as follows:

e, ~N(©0,02,) 2.7)

Here, €_is the total measurement error associated with three independently distributed

sources, ground, airborne, and residuals. Among these error sources (2.6), the ground
error is of specific interest in this research, but the methodologies presented are generally

applicable. In section 2.2.3, the observability of this error source is briefly explained.

2.2.3 LGF Error Observable. The pseudorange measurement for the n" satellite

of the m" receiver at an LGF can be expressed as:
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PR’ =R +ct" +ct_+I1"+T"+MP, +DMP; + RN (2.8)

R’  isthe geometric range between the satellite and receiver antenna on the ground,

T" is the tropospheric delay error,
I is the ionospheric delay error,
ct” is the satellite clock error,

ct is the clock error of ground receiver,
MP’ is the multipath error of ground,
DMP?! is the diffuse multipath error of ground, and

RN" is the receiver thermal noise.

The error sources may be sorted into two groups in terms of commonality between
ground and airborne measurements as follows. The first group includes correlated errors

between reference receivers and users caused by the space segment:

e =ct"+1"+T" (2.9)
The second group consists of errors which are uncorrelated between reference and user

receivers, usually caused by local signal disturbances and receiver-related errors:

e’ = MP" + DMP" +RN" (2.10)
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The effects of e are negligible because the errors cancel for ground and airborne

receivers in local proximity. Any residual errors due to spatial decorrelation can be
bounded theoretically and will not be covered in this research. However, the effect of

PR

e," error remains in the DGPS process of LAAS. These errors are of primary interest in

this research and are briefly described as follows:

Multipath: The reflection and diffraction of a transmitted GPS signal from ground
surfaces and discrete objects in the vicinity of the antenna can cause multiple signals to
be received by a user. This phenomenon, termed multipath, is the largest error
contributor source in LAAS. Multipath basically distorts the GPS signal modulation,
resulting in measurement errors in pseudorandom code.  Ground multipath is not
correlated with multipath at aircraft, and is not easily attenuated through filtering;
therefore it causes DGPS positioning errors in LAAS. When the objects surrounding an
antenna contain reflecting surfaces, multipath will most likely be present. Reflections
from smooth, relatively flat and conducting surfaces are termed ‘specular,” meaning the

waveform structure of the signal energy is preserved and only the amplitude is attenuated.

Diffuse Multipath: As the surface roughness increases, the reflections become
diffuse. The signal energy is dispersed, greatly reducing the signal power directed
toward the antenna. Moreover, as the signal moves across the rough surface, the diffuse
scatter takes on a random appearance. Diffuse multipath, in contrast to specular, may be

greatly reduced in a filtering process.



Receiver Noise: Noise associated with the measurement of pseudorange and phases
attributed to the receiver itself is called receiver noise. This noise is uncorrelated

between measurements (white noise) and tends to be small in magnitude.

Observation of the e} type error can be obtained easily by processing the Code
Minus Carrier (CMC) error observable. This method is used to generate the majority of
the experimental results in this thesis. Although it requires the use of dual frequency (L1
and L2 together) measurements, the following two related advantages are significant: 1)
Error can be observed on individual reference receivers (RRs) so errors across RRs need
not be Independent and Identically Distributed (IID), and 2) It is useful for estimation of

correlation between reference receivers.

In order to obtain the CMC error observable, first, the carrier error observable is

introduced. - The carrier measurement for the n™ satellite of the m™ receiver at the LGF

can be expressed as:

@' =R" +ct" +ct, +AN" —1" + T" + mp" +dmp” +rn" (2.11)

A is the carrier wavelength,

N® is the integer ambiguity in cycles,
is the carrier phase multipath error,
dmp

is the carrier phase diffuse multipath error,

m
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n

) is the carrier phase receiver noise.

Then Code Minus Carrier (CMC) can be formed as:

PR" —®" =2I" —AN" + MP" + DMP" + RN® —mp" —dmp" —rn" (2.12)

It is clear that most of the common errors between code (2.8) and carrier
measurements (2.12) are eliminated via the CMC process. However, a significant
number of error sources still remain. These types of errors are uncorrelated between code

and carrier measurements and therefore cannot be eliminated by the direct process of

CMC.

Error components in Equation (2.12) are: 1) presence of the ionospheric error term
(2I") due to the dispersive nature of the ionosphere which causes code delay and phase
advance [Misra0l], 2) a cycle ambiguity term (M:I]“n) representing the number of

complete carrier waves between the satellite and receiver, and 3) all other uncorrelated

error terms presented in CMC corresponds to code and carrier measurements.

In this research, CMC error is used widely in the generation of empirical results from
data after the following corrections were made. First, the ionospheric error term is
obtained by aid of dual frequency carrier measurements (differencing L2 and L1 carrier

measurements) as given by Equation (2.13) and then eliminated from CMC.

o =2(;,, — o7, /(62 /£ -1) (2.13)
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where,

., isthe carrier phase measurement for the L1 frequency
., 1sthe carrier phase measurement for the 1.2 frequency
£, is the frequency for the L1 band (1575.42 MHz)

s is the frequency for the 1.2 band (1227.60 MHz)

The second correction is to remove the cycle ambiguity term (MQI; ). As this term
occurs as a bias, it is easily removed during the process. The final step is to neglect the
uncorrelated error terms corresponding to the carrier measurements as they are very small
(e <<e®) compared to the code measurements. Correcting all these terms in the CMC

measurement yields the following error terms corresponding to only the code

measurement error:

PR" —@" = GMP" + DMP" + RN" (2.14)

Equation (2.14) presents the error sources of greatest interest in this research. The
statistical descriptive value of broadcast corrections will be generated based on these
error sources. In Figure 2.3, an example of CMC error data versus time is plotted before

and after removal of Ionospheric error, the first of the three CMC corrections.
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Figure 2.3 GPS Ranging Error Observable

2.2.4 Carrier Smoothed Code. As described in [MASPS98], a carrier aided
smoothing filter is used in LAAS. Known as a ‘Hatch Filter,” its purpose is to attenuate
high frequency code measurement noise. The expression for filtered pseudorange

(Carrier Smoothed Code) is given as:

(P——R—:n,kvl +(Dnm,k _(Dnm,k-l) (2-15)

PR", =1PR;‘M )
T T

where,

PR! =PR’,

PR”  is the pseudorange measurement

T is the carrier smoothing time constant (usually 100 seconds)
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@’ is the carrier phase measurement

k is the sample index

An example result of smoothing filer output is plotted in Figure 2.4 for an arbitrary
satellite pass. The dark solid line indicates the output of the smoothing filter (Smoothed

Code Minus Carrier, SCMC) while dots represent original unsmoothed pseudorange

noise (Code Minus Carrier, CMC).

Error (m)

2 0.5 1 15 2 2.5 3 3.5 4
Time (hour)

i i |

Figure 2.4 CMC and SCMC versus Time

2.2.5 LAAS Broadcast Correction Values. In LAAS, the following parameters are
broadcast from the LGF to the airborne user for accurate positioning as well as integrity

risk management: PRc (pseudorange correction), B-values (for integrity), and error
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distribution parameters o©, (for integrity). This section briefly describes the

r_gnd

generation of two of these corrections parameters, PRc and B -values.

PRc: The pseudorange corrections are computed by subtracting the known distance
between satellite and reference antennae (phase centers) from pseudorange measurements
made by receivers. For example, for an arbitrary satellite n and reference receiver m, the
pseudorange correction can be expressed as PRc! . The corrections of multiple (M)
reference receivers are averaged for each satellite in order to form a single composite

broadcast correction for each satellite (as follows for satellite n):

PRc" = (2.16)

k<
Mz
s~}
7
;.05

—
I

B-value: This value is formed by excluding one of the reference receiver’s
measurements form the correction and differencing the result from PRc". The process is

repeated for all satellites. For an arbitrary satellite n and reference receiver m we have:

M
B’ =PRc" —M#ZPRCE‘ (2.17)

T
3=

where,

j is index to reference receivers

n is an arbitrary satellite
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m is an arbitrary reference receiver

M is the number of reference receivers

The B-value is used at aircraft in the computation of VPL/LPL under the reference

receiver failure hypothesis [Liu97].

2.3 The LAAS Navigation Integrity Allocation

The basic function of the LAAS Ground Facility (LGF) integrity system is the
detection and removal of anomalies present in the LAAS signal-in-space (SIS) that would
otherwise result in an unacceptable integrity risk to an aircraft on final approach. The
notion of SIS is introduced primarily to distribute accountability between the ground and
airborne navigation subsystems. In general, the aircraft is responsible for the proper
functionality of the airborne equipment (which would typically include the
implementation of redundant sensor tracks to provide the means for detection and
removal of airborne equipment failures), while the LGF is responsible for the detection of
anomalies in both the received satellite signals and the LAAS reference data broadcast to
the aircraft. A sketch of integrity risk allocation is given in Figure 2.5. The satellite

signals and broadcast reference data collectively define the LAAS SIS.

As currently envisioned, LAAS SIS integrity monitoring is comprised of both ground

and airborne elements. The need for an airborne processing component, even for SIS



Integrity System Level

Airborne Integrity

(Integrity Associated with overal system Safety) g
(Monitored at Aircraft)

LAAS SIS Integrity
(Assumes Fault Free Airborne Equipment Performance)

LGF

Gpr7 gnd

PRc¢

Y

Integrity Associated with all other Sources
not (Ho and H1 Hypothesis), VDB Falure, GPS Space Segmentetc
{Monitored at LGF)

B~ Values

e=a
| e |

Integrity Associated with the SIS
Protection Bounding the NSE (Ho and -H+ Hypothesis)

=

U

Aircraft ‘

Fault Free GPS Performance

(Ho Hypothesis: No fault of Reference Receiver)

Faulty GPS Performance
(H: Hypothesis: Single fault of Reference Receiver)

Pseudorange Error Model

NO.o; L)

N 2
2 r_gnd,n
VPLHU = knul_ﬂ" stu PTg+

U

n=t

G

5
cypr__zir»lot‘,n :|

i N
VeL, 558,

Pseudorange Error Model

e Mo
" M-

0

n=]

‘ K o ¢ c‘:;r_gnd‘n 2
+ K z ) 7M_1 +opl»a’rv tot,n

|

[_\_—> VPL =max(VPL, ,VPL, ) <;—J_

LPL = max(LPL, ,LPL, )

m

P(HMI)< 10"

L a| VPL<VAL e =04 atol
r_air _tot pr_ar pr_res
LPL < LAL |-
Yy

Figure 2.5 LAAS Integrity Allocation Diagram

26



27

monitoring, is motivated by the fact that the integrity specifications are expressed in the
position (rather than range) domain. Because the LGF is generally unaware of the
specific satellites being tracked by the airborne receiver at any given time, an airborne
processing component is implemented specifically to convert ground-broadcast range
domain statistics to position domain Protection Levels.  Specific approaches for the

airborne processing may be found in [MASPS98, Liu97, and LGF02].

2.3.1 Protection Level Equations. The Protection Level Equations (ie.,
VPL/LPL) are frequently used in all chapters in the thesis. They are standardized and
can be found in a number of references such as [MASPS98, MOPS00, and Liu97]. In
the following a brief summary of them is provided. These Protection Levels define
position error upper bounds of the aircraft to indicate whether or not the LAAS supports

the availability of precision approach and landing under the following two fault

hypothesis:
H, Ground measurements are fault free, P(H,) = 1
H, A fault exists on one or more measurements made by one reference receiver.

Based on historical performance, and the existence of monitors at the LGF, is
assumed that a priori probability of one reference receiver faulting is

107 /approach . Since there are M reference receivers, the probability of H,

is given by P(H,) = M-10~°
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VPL,, bounds the fault-free vertical positioning error by the probability 1-P_,

where P, . is the probability of fault-free missed detection. VPL, is defined as:

P(vertical NSE> VPL |system fault-free)=P_ ,

i |

where NSE is Navigation Sensor Error. If VPL,, is greater than the Vertical Alert Limit

(VAL ), then the Hazardous Misleading Information ( HMI) is said to exist.

VPL,, bounds the vertical positioning error by the probability 1-P,,, where P, is

the probability of missed detection under H,. VPL, is defined as:

P(Vvertical NSE > VPL,, |reference receiver failure)=P,,

If VPL,, is greater than VAL, then HMI is said to exist. Since we do not know

which hypothesis is true (H, or H,), we must choose the larger of the VPL, and

VPL, :

H, *

VPL = max{VPL, VPL, } (2.18)

where,



29

N Gzr nd,n
VPLHO = kmdﬁff \/;Sjn {_ﬁi‘_— + G;_aih" + Gir_res,n } ? (2' 19)
VPL,, =max|[VPL ], (2.20)
! i
and
N N 02
VPL, =[>S. B, |+k,. > S, {—M—g“TM +0§ues.n} 2.21)

In addition to generating the Protection Levels defined above, the airborne processor
must also verify whether the satellite geometry supports system continuity requirements.

This is done by assuring that the “predicted” VPL is less than VAL [Liu97]:

2

k

N N (¢
VPL . =——=it_ %S0l .. Fk S;| =t il 40O (2.22)
predict M(M _ 1) ; zn ~ pr_gnd,n md \/; an: Mn _1 pr_air,n pr_res,n

where,

n is the satellite index,

M is the number of reference receivers used to generate the broadcast correction,

N is the number of available satellites,
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S is the n"element of the third row (representing the vertical component) of the

zn

weighted geometry projection matrix used to generate the position estimate,

B,  is the broadcast ‘B-value’ for satellite n associated with the given reference
receiver,

M is the number of reference receivers used to generate the broadcast correction,

O, .. is the LGF broadcast correction error standard deviation,

G, . 1isthe airborne measurement error standard deviation,

c is the standard deviation of residual errors not directly attributable to ground or

pr_res
airborne error (such as tropospheric decorrelation),

k is a multiplier used to set the desired level of missed detection probability

md
assuming gaussian errors,

k is a multiplier used to set the desired level of fault-free missed detection

md _ ff
probability assuming gaussian errors,

k is a multiplier used to set the desired level of fault-free detection probability

fmd

given.

Detection multipliers are given in Table 2.1 (Fault-free missed detection and missed
detection) and Table 2.2 (Fault-free detection). Each table contains detection multipliers

as a function of performance type and number of reference receivers.
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Table 2.1. Missed Detection Multipliers

Performance K.« K.
Type M=2 M=3 M=4 M=2 M=3 M=4
1 5.762 5.810 5.847 2.935 2.898 2.878
2 6.598 6.641 6.673 4.305 4.279 4.265
3 6.598 6.641 6.673 4.305 4.279 4.265

Table 2.2 Fault-Free Detection Multipliers

Performance K
Type M=2 M=3 M=4
1 5.026 5.104 5.158
2 N/A 5.233 5.286
3 N/A 5.451 5.502

2.4 LAAS Navigation Performance

LAAS Navigation Performance Requirements are specified in Table 2.1 to support
implementation of advanced terminal navigation concepts as a function of Operational

Categories [MASPS98]. These Navigation Performances are defined below:

2.4.1 Accuracy. Accuracy is the degree of deviation of navigation output from true
position and/or velocity under fault-free conditions. It indicates how well the navigation

system is performing.

2.4.2 Integrity. Integrity is the ability of a system to provide timely warnings to
users when the system should not be used for navigation. Integrity risk is the probability

of an undetected navigation system error or failure that results in hazardously misleading
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information onboard the aircraft. It indicates how well the navigation system detects
failure to meet the required operational accuracy.

2.4.3 Continuity. Continuity is the likelihood that the navigation SIS supports
accuracy and integrity requirements for the duration of the intended operation. It
indicates the ability of the navigation system to provide accurate positioning with

integrity without interruption.

2.4.4 Availability. Auvailability is the fraction of time the navigation function meets
the required performance of continuity, integrity, and accuracy for the initiation of the
intended approach. It indicates how well the navigation system provides sufficient

performance for continuity, integrity, and accuracy.

2.4.5 Operational Concept. The operational concept includes the requirements for
a GPS/LAAS intended to support operations for Category I, II, IIla and IIIb precision

approaches and landings [MASPS98]. These requirements are summarized in Table 2.3.

o Category I. A Category I approach is defined as a precision instrument
approach and landing with a decision height not lower than 60 m and with

either a visibility not less than 800 m, or a runway visual range not less than

550 m. [MASPS98]

e Category II. A Category II approach is defined as a precision instrument
approach and landing with a decision height lower than 60 m but not lower

than 30 m and a runway visual range not less than 350 m. [MASPS98].
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e Category III. A Category IIla approach is defined as a precision instrument
approach and landing with a decision height lower than 30 m or no decision
height and a runway visual range not less than 200 m. A Category IIlb
approach is defined as a precision instrument approach and landing with a
decision height lower than 15 m or no decision height and a runway visual

range less than 200 m but not less than 50 m. [MASPS98].

Table 2.3. LAAS Performance Requirements For Precision Approach [Enge99]

Category 1 Category 1 Category II1
Decision Height (DH) 60m 30m 0-30m
Vertical Accuracy (95%) Sm 2.5m 2.5m
Continuity 10”/approach 10"/ approach 10”7/ approach
Integrity 4x10"/approach | 4x10%/ approach | 4x10”/ approach
Availability 0.999 0.999 0.999
Vertical Alert Limit (VAL) | 10m Sm 5m
Time to Alarm 6sec 2sec 2sec

2.5 GPS/LAAS SIS Accuracy Requirement

In this section, a brief background of GPS/LAAS SIS accuracy requirements is given.
These requirements are defined based on both availability concerns of LAAS and
performance that can be achieved using currently available GPS receiver technology.
They are not based on ranging error overbounds and do not reflect the work done in this
thesis. However, the current requirements are extremely valuable in terms of providing a
common basis for defining LAAS performance in terms of availability.  The

requirements are widely used in the simulation-based analysis in Chapter 3 and again in

Chapter 5 to evaluate LAAS performance under availability concerns.
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Recall from Equation (2.6) that the total differential pseudorange correction error

2 =g¢? +0° +0? . The

standard deviation computed at the aircraft is ©,,, =0, 0. T 0, wn T 0p o
related accuracy models will now be discussed. Details of these values can be found in

[MASPS98 and McGraw(0].

2.5.1 Ground Accuracy Designator (GAD) Model. The required accuracy
allocation for ground error is formed by the combining the contributions of receiver

noise, multipath, and the SIS residual error as follows:

< (ao + ale_ei/eo )2 2 a, 2
O, waces(8) S v +a; + n6 (2.23)
where the values used in Equation (2.23) are given in Table 2.4.
Table 2.4 GPS/LAAS SIS Accuracy Requirement
Grounq Accuracy 0 a, a o, a a,
Designator : ! :
(GAD) (degree) (meter) (meter) (degree) (meter) (meter)

A >5 0.5 1.65 14.3 0.08 0.03

B >5 0.16 1.07 15.5 0.08 0.03

C > 35 0.15 0.84 15.5 0.04 0.01

<35 0.24 0 --- 0.04 0.01

The letter ‘A’ stands for the performance type of a standard correlator receiver and

single-aperture antenna technology. The letter ‘B’ stands for the performance type of an

advanced narrow correlator receiver technology with a conventional antenna. Finally the
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letter ‘C’ stands for the performance type of an advanced narrow correlator with a

multipath Limiting Antenna (MLA).

2.5.2 Airborne Accuracy Designator (AAD) Model. The Airborne Accuracy

Model (AAD) is similar to GAD but is defined based on error due to wide band noise,

interference and error due to airframe multipath as follows:

c 8,)<a,+ae™™ (2.24)

pr_ air,GPS

where the values used in Equation (2.24) are given in Table 2.5.

Table 2.5 Airborne Accuracy Requirements

" Airborne Accuracy 9
: a a
Designator 0 0 !
(AAD) (degree) (meter) (meter)
A 19.6 0.1600 0.23
B 27.7 0.0741 0.18

The letters ‘A’ and ‘B’ stand for the achievable performance of the receiver
technology for aviation. Simply stated, the A indicates the worst performance and B the

best. More detail maybe found in [McGraw00 and MASPS98].

2.5.3 Tropospheric/Ionospheric Uncertainties. Accuracy models developed in this

section are for the residual effects due to ionospheric and tropospheric spatial
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decorrelation: The two terms are defined separately and then combined into one residual

uncertainty term.

Tropospheric Uncertainty (due to spatial decorrelation): The tropospheric error may

be modeled as

10_6 ~A /h
G, . =0gh, (1—e20/m) (2.25)
- 4/0.002 +5sin*(8,)

where,

O, is refractivity uncertainty (unit-less),

h, is tropospheric scale height (meters),

Ah is aircraft distance above reference station (meters)

Ionospheric Uncertainty (due to spatial decorrelation). The ionosphere pseudorange

error may be modeled as

Giono = FPPGven_iono_grad (Xair + 2’cairvz\ir ) (2'26)
where,
T,,  Is the airborne carrier-smoothing time constant (100 sec),
v, isthe horizontal user velocity (~70 m/sec)
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o is the ionospheric delay change (as a function of ionospheric pierce-points

vert _iono _ grad

separation between reference receiver and user, ~2mm/km),
X is the user-reference separation,

alr

273 '
R cos(® ) ) .
F =/1-{—> is the obliquity factor,
PP { ( R +h J} quity

R is the approximate radius of Earth’s ellipsoid (6378.1363 km),

¢

h is the height of the maximum electron density of the ionosphere (~350 km)

The residual uncertainty can now be formed as [McGraw00, MASPS98]:

o =0’ +0’ (2.27)

pr_res pr_ tropo pr _iono

2.6 Conclusion

A summary overview of fundamental LAAS-related issues is provided in this chapter.
This includes a description of LAAS, integrity and accuracy-related issues, and the error
observables. The concepts covered here form the basis for the subjects discussed in the

remaining chapters of this thesis.
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CHAPTER 111

GAUSSIAN RANGING ERROR

3.1 Introduction

For normally distributed error sources such as receiver-related noise and diffuse
multipath, standard deviations can be estimated using experimental data alone. In this
case, however, it is still necessary to account for the additional integrity risk incurred by
statistical uncertainty (due to finite sample size) in the knowledge of reference receiver
error standard deviation as well as error correlation between multiple reference receivers.
In this regard, a detailed methodology has been developed for the definition of minimum
acceptable inflation parameters for the sample standard deviation to ensure navigation

integrity.

3.2 Sigma Sensitivity Analysis

In the LAAS architecture, and in this analysis, integrity risk under the hypotheses of

fault-free conditions (H,) and integrity risk in the event of a single reference receiver
failure (H, ) are considered separately. Nominally, the vertical protection limits, VPL,
and VPLHl , are computed at the aircraft based on values of broadcast correction error

standard deviation (o, ) for each satellite sent by the reference station. In addition,

r_gnd

the prescribed computation of VPL, requires that the ground receiver broadcast
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differences between the pseudorange corrections derived from various subsets of the
multiple (typically 3 or 4) LGF reference receivers. The precise mathematical structure
of these differences, termed B -values,’ is defined in Equation (2.17). (In contrast, the
nominal correction broadcast for each satellite, which is used for positioning but not in
the computation of protection limits, is based on an average across all reference

receivers.) The prescribed missed detection (MD) probabilities for H, and H, are
specified, respectively, in terms of gaussian multipliers k , . and k_,, which are defined

in Table 2.1.

The general approach taken in this analysis is to first quantify true missed detection
probability given that the actual value of reference receiver error standard deviation (o)

deviates from the broadcast value © Since it is recognized that any realizable

pr_gnd *
estimate of standard deviation will be based on a finite number of error samples, it is then

also necessary to ensure that the broadcast value of © accounts for any statistical

pr_gnd

uncertainty that may lead to increased integrity risk.

3.2.1 H, Case. The vertical protection limit under the hypothesis of a failure
(VPL,, ) on any given reference receiver is given by (2.21). In this analysis, a Category
1 system with a class ‘B3’ ground facility (M =3) and ‘B’ class airborne equipment is
assumed as defined in Table 2.2. Although we will explicitly consider only variations in

O, - it should be noted that the method of analysis described below is in principle

applicable to airborne and residual errors as well.
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When the actual ground standard deviation (o) differs from the nominal value

(O, o ) Used to generate VPL, , the effective missed detection multiplier for the

computed value of VPL, is given by

3 62 nd; .n
Zsin 2o +02r air,n +62r res,n
n=l M _1 pran pr - fes.
" (3.1)

md
N (52
2 2 2
\/ZSZ“{M : 1 +Gpr_air,n +6pr_res,n
n=| a

=+/Mo o we» and k_, is a multiplier used to set the desired level of missed

where 2O e _end,

detection probability assuming gaussian errors. k_, holds a value of 2.898 for a

md

Category I approach with three reference receivers (see Table 2.1).

Note that the B-value term in Equation (2.21) is not present here since it is invariant

with respect to changes in 6. The associated MD probability is then

P, (MD|G,,...0,)=Q(k,, ) (3.2)

where, the function Q(x) is defined as the area to the right of x under a standard normal

density function (i.e., the ‘tail probability”).
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Clearly P, (MD) will in general be a strong function of satellite geometry through

the projection matrix S. A GPS constellation simulation was therefore executed to

establish this sensitivity. The details of the geometry simulation follow:

Constellation: Nominal 24-satellite constellation as defined in RTCA DO-229A.
= FElevation Mask: 5 degree

»  Simulated Duration: 24 hours

» LGF Location: Chicago O’Hare International Airport

» SV Outage Conditions: Both the complete 24-satellite constellation and worst-

case (most sensitive) 22-satellite constellation subsets were simulated.

Geometries not meeting VPL, < VAL using the nominal value of © were

pr_gnd

excluded since aircraft approaches would not be conducted in these cases.

In the first set of simulations, all 24 Space Vehicles (SVs) were assumed to be usable,

and the true standard deviation (¢ ) was varied from nominal (¢, ,,, ) on all visible SVs.

The resulting integrity risk is shown in Figure 3.1 as a function of G/(S The

pr_gnd, *

discrete distribution of data points along the horizontal (G/ O, . ) direction in the figure

corresponds to the discrete values of 0'/0 simulated. The vertical distribution of

pr_gnd,

data points at each value of G/ o is due to the varying geometries accumulated over

pr_gnd,
a 24-hour period. The upper bound integrity risk curve (solid) represents the highest

level of integrity risk over the 24-hour duration. Note that when G/ c =1, the missed

pr_gnd,

detection probability attains a nominal value of Q(k_,)=0.0019.
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Given that all 24 satellites are available, the results in Figure 3.1 are undoubtedly

conservative since it is unlikely that broadcast ¢, ,, would underestimate the true error

standard deviation for all visible satellites. In this regard, a second simulation was
performed varying ¢ on only one (the most integrity-risk-sensitive) satellite for each
geometry. The results are shown in Figure 3.2. When compared with the results of

Figure 3.1, integrity risk is reduced for values of (5/ G, e > 1 (as expected) but increased

for values of o/c, ,, <1.
0.08
0.05
A
=
=
A oo
o
L
© o003t
% 0.0019 (nominal)
\:4 0.021
T
A~
0.01+
83 1 15 2
cs/(spr_gmjll

Figure 3.1 H, Integrity Risk Sensitivity to ¢ -Variations -- 24 SV Case
(o Varied on All SVs In View)

The latter increase is due to the fact that ¢ is reduced on only one SV (in contrast with
Figure 3.1 where ¢ was reduced on all SVs). Figure 3.3, which superposes the upper

bound curves from Figures 3.1 and 3.2, clearly shows the difference in integrity risk

sensitivity under the two sets of assumptions.
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0.06

0.05(

0.04-

0.03- - -~
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PHI(Mchlcpr_gndl)

0.01f

5 2

Bs 1 c/cpr_gn di 1.

Figure 3.2 H, Integrity Risk Sensitivity to ¢ -Variations -- 24 SV Case
(o Varied on Worst-Case SV Only)

0.08 T [

0.05 All-SVs : /

7~~~

= :

=

% 0.04 :
3 | Y/
L o Most-Sensitive SV ;
& :
\E/ 0-02 ........
F A

0.01 /
85 1 15 2
cs/cspr_gndl

Figure 3.3 H, Integrity Risk Sensitivity to ¢ -Variations -- 24 SV Case
(Upper Bound Curves from Figures 3.1 and 3.2)

In general, however, it cannot be assumed that all 24 satellites will always be
available for use. For example, existing simulation results of LAAS operational
availability in the LAAS standard [MASPS98] are based on the worst-case (lowest

resulting availability) 22 satellite subset geometries. In this context, the simulations
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executed above Were repeated for all 22-satellite subset geometries. The resulting upper
bound sensitivity curves assuming G variation on all satellites and ¢ variation only on a
single (most sensitive) satellite are shown in Figure 3.4. The results clearly show that in
the presence of a modestly depleted constellation, there is little difference in integrity risk
sensitivity for the two approaches. This result is readily explained by the fact that when
fewer satellites are available the effects in the position domain due to ranging error
variations on individual geometry-critical satellites are more pronounced. For our
analysis, we can conservatively define the actual integrity risk sensitivity curve for the

H, case as a piecewise superposition of the two curves in Figure 3.4. Therefore, for any

value of G/ o the upper of the two curves is used.

pr_gnd, ?

0.0

0.05 /

Py, (MD|o/ Opr gndy)

0.02
0.01 /
83 1 15 2
o/c

pr_gnd]
Figure 3.4 H, Integrity Risk Sensitivity to ¢ -Variations, 22 SV Case.
(Upper Bound Curves)
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Given that the conditional probability P, (MD|c/o,, ) has been established, it is

still necessary to define a distribution for (5/ o

pr_gnd,

such that the overall risk probability

can be quantified. In this regard, it is well known that the sample variance 6” of n,

independent measurements derived from a gaussian distribution is Chi-Square

distributed:

A2
o

(ns ——1) 2 ~ Xi_]
G s

(3.3)

Thus, for a given computed value of &, the probability that ¢ lies in any specified

range is easily computed. For example, Figure 3.5 shows the resulting probability mass

function P(o/o,, ., |6/,

0.08

0.04

0.03

Probability

0.01F

Figure 3.5 Probability Distribution for 6/0,

_gnd, *

n,) for the case where 6/c

pr_gnd,

=0.9 and n_=20.

T

Upper Bound P, (MD | ¢

P(c/o, .. |6/0, n

r_gnd, ?

r_gnd,

=09 n =20
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The result is plotted together with the conditional P, (MD|(5/0 o ma ) CUrve already

r_gnd,

established.

Clearly, despite the fact that & is lower than G for this case, the likelihood that

r_gnd,

the actual value of ¢ exceeds © is non-negligible. As the number of available

pr_ gnd,

samples, n_, is increased, however, the likelihood that ¢ exceeds © decreases.

pr_gnd

Figure 3.6 illustrates the case where n,=80. Similarly, if the computed value of © is

lower, the likelihood that ¢ exceeds © is also lower. Figure 3.7 shows the case

pr_gnd,

where n, =20 and 6/(5pr =0.7. A parametric analysis was performed in which ng

_gnd,

was varied with discrete values 20, 50, 100, 200 and 500, and 6/ o between 0.7 and

pr_gnd,

1.3 (in increments of 0.01).

0.06

0.05

0.04

0.03

Probability

0.02

Figure 3.6 Probability Distribution for6/c,, ,, for 6/0, ., =09, n =80
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003}

Probability

0.011

c/o

pr_gnd,

Figure 3.7 Probability Distribution for /¢ for 6/, ,, =07, n =20

pr._gnd, _gnd;

The overall H, missed detection probability given 6/c,, ., and n, was then computed

numerically via

p, (MD|6/s,, ,, .n,) = 3P, (MD|o/o, . )xP(6/5,, o | 6/0, 0 .0.) (34)

The results are plotted in Figure 3.8, which shows quantitatively how the H, missed

detection probability increases as 6/ o increases and as n_ decreases. The results are

pr_gnd,
plotted in terms of percentage error (above the nominal value of 0.0019) in Figure 3.9.

To ensure integrity in an absolute sense P, (MD l s/ O g ,ns) should not exceed the

nominal specified value of 0.0019. However, the results in Figure 3.9 show that this

criterion cannot be realistically attained because an infinitely large sample set is required.
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0.014 T )

n_ values from top to bottom: /|
0.012
20, 50, 100, 200, 500 /
= 0.01 /
% 0.008 » / ////
Q? 0.008 /7
0.004 /
0.002 e
E
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Figure 3.8 H, Integrity Risk Versus 6/

pr..gnd,

30
R n_values from/{op to bottom: /
~ 28
5 20, 50, 7)0 200, 50 / /
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g /]
S s /
z. /
>
.g 5//
o

87 075 0.8 085 0. 0.95 1
G/G, g,

Figure 3.9 H, Integrity Risk Versus /6, ,, (Relative Error)

r_gnd,

Nevertheless, it can be ensured that the missed detection probability does not differ
from the nominal value by a significant amount. For example, Table 3.1 summarizes the
results obtained from Figure 3.9 assuming that a 5% tolerance is acceptable. Under this

assumption, the table quantifies the minimum value of © that may be broadcast

pr_gnd,
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given any value of & obtained from n_samples. Clearly, the broadcast G, ,, must in

general be larger than 6. As expected, however, the buffer factor (the amount by which

& must be scaled to define &, ,, ) approaches 1 as n, grows large. (Note that the

quantitative results in Table 3.1 apply for the H, case only.)

Table 3.1 Sigma Buffer Factor for H,

n Minimum Value of 6, .,
20 1.31x6
50 1.16X6
100 1.09x6
200 1.05x6
500 1.02x6

3.2.2 H, Case. For the fault—free hypothesis, the vertical protection limit is given by

Equation (2.20). When the actual ground standard deviation ( ¢ ) differs from the nominal

value (G, ., ) used to generate VPL, , the effective missed detection multiplier for the

computed value of VPL,, is given by

N GZ od
ZSZ pr_gnd;,n +62 ) +62
- zn M pr_air,n pr_tes,n
. : (3.5)

where, k_, , is 5.810 for Category 1 approach with three reference receivers (see Table

2.1). The associated MD probability is
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P, (MD|G0,,...6,) =2Q(k,, ) (3.6)

The factor of 2 in Equation (3.6) is present for H, case because the underlying fault-
free distribution has a zero mean, and therefore both positive and negative errors are of

interest. The sensitivity analysis executed for the H, case was repeated for H;. The

resulting sensitivity of missed detection probability for the H, case is quantified in

6/ o, n ) increases as

r_gnd; > s

Figure 3.10. As with the H, case, the integrity risk P, (MD

6/(5 increases and as ng decreases. In Figure 3.11, the results of Figure 3.10 are

pr _gnd,
plotted in terms of percentage error (relative to the nominal value of

2Q(k,, ) =6.2x107).

1 values from top to-bottom
105, 20, 50, 100, 200, 500
~ e A
a . i
S e
N’
=
o]
By 107
rd
10”° <
.9
100,7 0.8 09 1 1.1 1.2 1.3
6/c
pr_gnd;

Figure 3.10 H, Integrity Risk Versus 6/0,

r_gnd,
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Figure 3.11 H, Integrity Risk Versus &/0,, ,, (Relative Error)

The results of the H, ©-sensitivity analysis are summarized in Table 3.2, where a
5% missed detection tolerance (relative to nominal) has again been used. As with the H,
case, the buffer factor approaches 1 as ns becomes very large. Note that, in general, H;

o -sensitivity is greater than that found for the H, case. This is due to the fact that a

small variation in ¢ for a gaussian random variable will cause a larger relative deviation

in probability from the nominal value when the nominal probability is small.

Table 3.2 Sigma Buffer Factors for H,

n, Minimum Value of 6, .
20 1.46x6

50 1.29x6

100 1.16x6
200 1.09x6
500 1.04x6
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Comparing the buffer factors in Table 3.2 with those in Table 3.1, it is clear that H, is

the more restrictive case (i.e., the required buffer factors are larger). Table 3.2 therefore

serves to define the minimum ¢ buffer factor.

3.3 Correlation Sensitivity Analysis

In the preceding analysis, it was implicitly assumed that ranging errors were
uncorrelated across ground receivers. Note, in fact, that any such correlation is not

consistent with the VPL equations since the © terms are always divided by the

pr_gnd,
number of receivers (to account for the averaging of uncorrelated receiver
measurements). In reality, however, it is possible that some measurable correlation
exists. Furthermore, even if a negligibly small correlation coefficient is computed from a
finite sample set, the statistical uncertainty in the estimate must also be accounted for.
Such uncertainty is lessened, as one would naturally expect, as the sample size used to

estimate correlation coefficient increases.

To examine sensitivity to correlation, we assume that the ground error standard

deviation for any given reference receiver is © The effect of positive correlation

pr_gnd, *
between receivers when averaging M~ errors can be (with modest conservatism)

modeled as an effective increase in 6 as follows:

=0, ., yJ1+M -1p 3.7
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where p is the maximum correlation coefficient between any pair of receivers, M =M
forH,, and M" =M -1 for H,. The sigma sensitivity analysis results (in particular, the

satellite geometry simulations) are directly applicable to correlation sensitivity as well

through the following simple transformation:

_ (6/0, ) —1
M -1

(3.8)

0.015

Upper Bound P, (MD lp) /

;8__ 0.01 //

a

s S

& o0 //

-8 4 0.2 Q 0.2 0.4 0.6 0.8 1
p
Figure 3.12 H, Integrity Risk Sensitivity to p - Variations, 22 SV Case.

(Upper Bound Curves)

3.3.1H, Case. Using the transformation above, the horizontal axis of Figure 3.3 may
be rescaled in terms of p. The resulting upper bound curve for the conditional
probability P, (MD|p) is shown in Figure 3.12. Now, given any pair of reference

receivers, each with n, samples of measurement error, we may compute a sample

correlation coefficient r. To define a distribution for p given r, we use a similar

approach to that in the sigma analysis except that the Chi-Square distribution no longer
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applies. Instead, we make use of the Fisher Z statistic [Bendat86], which is

approximately gaussian:

Zs%ln(l—ﬂ) SN, [%m(l_ﬂ“ﬂ} - _3)-%} (3.9)
l-r I-p

Figure 3.13 illustrates an example probability mass function P(p|r,n, ) for r=0.3,
n, =20 and finely spaced intervals of p. (The P, (MD|p) curve from Figure 3.12 is

overlayed.) A parametric analysis was then executed in which n, varied with discrete

values 20, 50, 100, 200, and 500 and r varied between -0.2 and 0.3. The overall H,

missed detection probability given p and n, was then computed numerically using a
summation procedure equivalent to the sigma sensitivity case. The results are plotted in
Figure 3.14, which shows quantitatively how the H, missed detection probability

increases as r increases and as n, decreases.

When compared to the nominal missed detection probability for H, (0.0019)

substantial increases in relative integrity risk are clearly evident in the results. However,
this is a not unexpected result because the VPL equations have no direct means to
accommodate effect of positive correlation, and furthermore, integrity risk is magnified
by uncertainty in correlation coefficient. Note, however, that in principle correlation can

be accounted for by simply increasing the value of o, For example for precisely

r_gnd, *
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known values of error standard deviation () and correlation coefficient (p ) we may use

any value of 6, ., such that
O o, > O/ 1+ M =1)p (3.10)
0.025 :
Upper Bound ;PHI (MD | p)
0.02 N
2
= 0015
2
3
o
e 0.01
[aM)
0.005
p

Figure 3.13 Probability Distribution for p given r=0.3, n_ =20

However, to account for the fact that ¢ is not known precisely (only the estimate G based

on n, samples is available), ¢ in Equation (3.10) above must be replaced with a(n )6,
where a(n )is the scale factor defined in Table 3.2. Similarly, because p cannot be

known precisely (only the correlation coefficient estimate r based on n, samples is

available), p must be replaced in Equation (3.10) with a buffered value p”, where p” is a

function of r and n, that is yet to be defined.
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n, Vhlue§ from top to bottom:
20, 50, 100, 200, 500

Py, (MD)

1"L--’O.Z -0.15-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

T
Figure 3.14 H, Integrity Risk Versus r

To determine the required value of p° for a given number or samples n;, the

conditional probability P(MD | p) was recomputed assuming that the value of &, _, has

already been buffered using the Equation (3.10) for selected values of p~ between 0 and
0.5. The resulting curves are given in Figure 3.15. Note that the curve corresponding to
p" =0 (which represents the case where there is no buffering on G, ,, ) is identical to
the P(MD |p) curve in Figure 3.12. As expected, the influence of non-zero correlation
coefficient on integrity risk is decreased as p° is increased (ie., as the buffer on

Opr_gnd, 18 increased).

For each of the p~ curves in Figure 3.15, it is possible to compute P, (MD|1,n,) as

was done for the p" =0 case in Figure 3.13. For example, the results for n, = 20 are

plotted in Figure 3.16. Note that the uppermost curve, which corresponds to the case
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p" = 0, is identical to the n, = 20 curve on Figure 3.14. For a 5% acceptable tolerance
on integrity risk relative to the nominal value of 0.0019, it is possible to obtain from

Figure 3.16 the maximum value of r allowable for a given value of p".

0.015 : :
Ffom top to bottom:
"=0,0.1,0.2,0.3,0.4,0.5
a 001 ,

a
g
T

P~ 0.005t /

0 i L ) L i i
0.4 -0.2 0 0.2 0.4 0.6 0.8 1

p
Figure 3.15 H, Integrity Risk Sensitivity to p - Variations, 22 SV Case.

(With Correlation Buffering)

From top to bottom:

p =0,0.102,030405

1

'§0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
r

Figure 3.16 H, Integrity Risk Versus r
(With Correlation Buffering)
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This result can also be interpreted as the minimum value of p° given a computed

correlation coefficient estimate, r. Figure 3.17 shows the results for the n, = 20 case
under consideration and also for values of n; equal to 50, 100, 200, and 500. It is clear
from Figure 3.17 that a nearly linear relationship (with unity slope and positive y-
intercept) exists between r and the minimum acceptable value of p”. The (minimum) p’

can thus be approximately defined by the simple linear functions in Table 3.3.

Table 3.3 Correlation Buffer Parameters for H,

n, Minimum Value of p°
20 0.26 +

50 0.14 +r

100 0.08 +r
200 0.05 +r
500 0.02 +r

From top to bottom:

n. =20,50,100,200,500

Minimum p*
o
3

0.1 /
0.05
/

83 0.1 0 0.1 0.2 0.3
T

Figure 3.17 Minimum p” for 5% H, Integrity Risk Tolerance
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Note that p° must always be larger than r in order to account for the statistical
uncertainty due to a finite number of samples. As n; becomes large, however, the

minimum acceptable value of p* asymptotically approaches r.

05
" From tgp)(%o tom:

N n,=20,50,100, 200, and 500" -
e

03 /
0.25

0.2

Minimum p*

015

0.1

0.05

T

Figure 3.18 Minimum p° for 5% H, Integrity Risk Tolerance

3.3.2H Case. The correlation sensitivity analysis executed for the H, case was
repeated for H,. Figure 3.18 shows the resulting minimum values of p° given a
computed correlation coefficient estimate r. Comparison of this figure with Figure 3.17
shows that, as with the sigma sensitivity analysis, the H, case is more restrictive because
for a given computed value of r the value of p* required to ensure a 5% integrity risk
tolerance is larger for the H, case than the H, case. Hence the H case must be the one
used to define p°. The approximate linear relations for H, derived from Figure 3.18 are

given in Table 3.4.
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Table 3.4 Correlation Buffer Parameters for H,

n, Minimum Value of p’
20 042 +r
50 027 +r
100 0.18 +r
200 0.12 +r
500 0.06 +r
107 : }
7~ GPf_af = GprAres = 0 """"
'§ 10" N et
3
5 AN
g SN
\.; GP _air &Gpr__res
o 10 (at maximum)
0.5 1 15 2
G/Gpr_gnd‘

Figure 3.19 H, Integrity Risk Sensitivity to ¢ - Variations, 22 SV Case

3.4 Worst-Case Sensitivity

The results generated thus far have been based on the nominal functions for o,

defined in Chapter 2. Since these functions actually define the maximum

pr_res

and ©

permissible values for these parameters, in practical application it is likely that 6, . and

o will be smaller. In this case, it is expected that integrity risk will be more sensitive

pr_res

It is therefore also instructive to examine the limiting scenario in

to variations m G, ., -
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which o and © are zero. We consider here only the H; case (because it has

pr_air pr_res
already been shown to be more sensitive to variations in ¢ and p than H ). In this

) for the 22 SV

pr_gnd,

regard, Figure 3.19 shows the upper bound curves for P, (MD | o/c

constellation case. The upper (solid) curve defines integrity risk sensitivity when &

pr_air

and © are zero. The lower (dashed) curve, which is included only for comparison,

pr_res

corresponds to the case already covered where © and © hold their maximum

pr_air pr_res
permissible values. It is clear that integrity risk sensitivity is increased for all values of
greater than one. Note that in this region, where the curves are defined by the

G/GPF ~gndy

case where o/c, ,yq, is varied on all satellites simultaneously, integrity risk sensitivity is

invariant with respect to geometry for the case where ¢ and © are zero. This is

pr _air pr_res

true since Equation (3.5) reduces to

P 3.11)

md _ff,
/O _om,
Using the same methodology described in the sections above, the minimum
acceptable values for 6° and p° were computed assuming an acceptable integrity risk

tolerance of 5%. These results are given in Table 3.5 for Category 1 approach and M = 3.

Note, as expected, that the buffer parameters are slightly higher than those in Table 3.2

and Table 3.4 (which were derived using the maximum permissible values for G and

pr_air

Gpr_res )'
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Table 3.5: Sigma/Correlation Buffer Parameters
(Results for Category 1 and M = 3)

n, orn Minimum 6 Minimum p°
20 1.61xs 045 +r
50 1.34%s 030 +r
100 1.18xs 0.20+r1
200 1.10xs 0.13 +r
500 1.05%s 0.07 +r

2
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Figure 3.20 Sigma Buffer Factor Versus Number of Samples

3.5 Integrity Risk Tolerance

Taken together, the results of the sigma and correlation analyses above demonstrate

that any value of © may be broadcast provided that the following inequality is

pr_gnd

satisfied:
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G, .0 > 0 I+(M-Dp" VM (3.12)

where 6" =a(n)&, p'=r+b(n,), and Gand r are the maximum values of sample

standard deviation and correlation coefficient for any receiver and reference receiver pair,
respectively. For the Category 1 case with M =3 and a 5% relative missed detection
(integrity risk) tolerance, the values of a(.) and b(.)are given for a number of discrete

values of ng and n, in Table 3.5.
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Figure 3.21 Correlation Buffer Factor Versus Number of Samples

Because the 5% integrity risk tolerance was arbitrarily selected, it is necessary to
quantify how the buffer parameters vary with respect to integrity risk tolerance. In this
regard, Figure 3.20 shows the required value of the ¢ buffer factor as a function of the

number of samples for various values of integrity risk tolerance. As one would naturally
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expect, the figure illustrates that for any given value of n_, the buffer factor decreases as

the integrity risk tolerance is relaxed.

Analogous behavior is exhibited for the required correlation buffer parameter in
Figure 3.21. In both Figure 3.20 and Figure 3.21, it is also clear that only marginal
reductions in buffer parameters will be realized for sample sets larger than 200 points.
However, it is equally clear that sample sets smaller than 100 points will typically require

rather large buffer parameters.

3.6 Conclusion

In this chapter, the sensitivity of LAAS integrity risk was investigated and quantified
with respect to the statistical uncertainty in the knowledge of reference receiver error
standard deviation and correlation between multiple reference receivers. A detailed
methodology was presented to define the minimum acceptable buffer parameters for the

value of o, broadcast to the aircraft. This work implicitly addressed only the

r_gnd
gaussian error structures associated with receiver-related noise and diffuse multipath.
Additional effects of remaining errors, such as ground reflection multipath or systematic

reference receiver/antenna errors are emphasized separately in Chapter 5.
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CHAPTER 1V

NON-ZERO MEAN GAUSSIAN RANGING ERROR

4.1 Introduction

LAAS navigation integrity risk is quantified at aircraft through the computation of
Protection Levels. In the Protection Level algorithms, zero-mean gaussian distributions
are assumed for each satellite’s LGF broadcast correction error as well as aircraft ranging
measurement error. In reality, however biases may exist in the ranging error of the LGF
and/or the aircraft. Such biases may potentially be directly observed in data or may be
purposely imposed as part of theoretical modeling. In either case, the existence of a
mean value in the correction error can result unacceptable integrity risk; therefore, it must
be accounted for in the sigma overbound. In LAAS, the sigma overbound implies a
position error bound because the Protection Levels (VPL/LPL) are expressed in terms of
aircraft position error. Thus, bounding a non-zero mean distribution in the ranging error
domain (single error PDF) does not necessarily guarantee an overbound for the position
error (multiple convolved PDFs). The satellite geometry (see Chapter 2 for observation

and projection matrixes) adds further complexity to the bounding process.

4.2 Bounding Concept

An overbound for aircraft position error is needed when the true ranging error

distributions are not zero-mean gaussian because, in LAAS, the aircraft assumes that the
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broadcast sigma is a standard deviation of a zero-mean gaussian PDF. It is the
responsibility of the LGF to provide a standard deviation of a zero-mean gaussian PDF
that represents the true correction error distribution. In reality, however, situations may
exist in which non-gaussian and/or non zero-mean gaussian distributions must be

bounded.

Bounding for ranging error is defined as a method by which a sufficient zero-mean
gaussian distribution is generated to overbound the tails of true aircraft position errors
having non-gaussian or non-zero mean gaussian PDFs. To ensure the validity of
bounding in the position domain, involves the convolutions of multiple non-gaussian
PDFs (i.e., sum of non-gaussian RVs) and the convolution of the same number of
gaussian PDFs. The resulting tail area Cumulative Distribution Functions (CDFs) are
evaluated to determine whether the gaussian result overbounds the non-gaussian at the
probability level of interest. The ratio of overbounding gaussian standard deviation to
that of the non-gaussian PDF parameter is called the Inflation Factor. For example, the
effect of ranging errors (e_, n=1,2,3,..,N) from N (122N >4) satellites is projected

into the vertical position error as:

e, =ismen 4.1)

where S_ is n™ element of the third row of the projection matrix detailed in Chapter 2.
In terms of the true ranging error PDFs (f ), the position error PDF is given by the

convolution integral:
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If all ranging errors are assumed gaussian (i.e., €, ~ N(O,Gn)), the vertical position error

PDF will also be a gaussian, feﬂ(sv):( 2n0v)7lexp(—sv(2ci)fl), with the following

distribution:

e, ~N(0,5) (4.3)

v

where 6, =/ :ZIS;Gi is the vertical position error standard deviation. The bounding

can be satisfied if the following inequality holds,
1~ [ f(e)de, 21 [ £, (e,)de, (4.4)

where %( - fﬂ f, (g,) de, ):%erfc@/ V2 ) is the area to right of ¢ under the standard

normal density function (i.e., the tail probability; see Chapter 3 for Q(¢) function) and

¢ =ko, is set for the desired probability level.

4.3 Mean Bounding for LAAS

As mentioned above, biases in ranging error are neither broadcast to the aircraft nor

defined as a part of Protection Level Equations. Therefore, the existence such biases
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must be accounted for by sigma overbounding. Overbounding non-zero mean gaussian
distributions is easy in principle, but difficulties arise when the LGF and aircraft are
unaware of distribution parameters corresponding to each other’s error PDFs.  For
example, broadcast sigmas of correction error are generated at the LGF, broadcast to the
aircraft, combined with sigmas of the aircraft, and then used in Protection Level
equations at aircraft for the final navigation integrity risk assessment of precision
landing. Both LGF and aircraft error statistics collectively must be considered in the
mean bounding process. To precisely accommodate for the existence of a mean value in
the correction error, the LGF must know aircraft ranging error distribution in order to

generate an appropriate overbounding value of o, Unfortunately, the LGF

c_gnd °
obviously cannot know anything about the incoming aircraft errors.  The critical
problem, then, in the bounding process is to account for non zero LGF mean errors: 1)
without pribr knowledge of each other’s error distribution parameters or 2) with

predefined worst-case (maximum) mean values assumed at the LGF and/or aircraft.

A simple case of mean bounding is illustrated in Figure 4.1. Two non-zero mean
gaussian PDFs and their convolution are plotted in first trace (upper trace). Then, a zero
mean gaussian distribution, in second trace, is generated to overbound the convolved
distributions. This is verified by CDF overbound at desired level of probability (see
vertical dashed line) in third trace. Finally, two zero mean gaussian distributions are
extracted from bounding distribution and are plotted in the lower trace. These are the

overbound of individual non-zero mean gaussian distributions given in the first trace.
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Figure 4.1 Gaussian Distribution Mean Bounding Concept

It is a]so noted that the mean values do not necessarily always have positive values.
In reality, however, it is often only possible to define a bound on the absolute value of the
mean ranging error (for example, from theoretical analysis ground multipath as described
in Chapter 5). Therefore, for a conservative bound, the mean values can be assumed to

be in the same direction (absolute values).

As described in Chapter 2, the computation of Protection Levels is based on a
Weighted Least Square Estimation which is driven by the satellite geometry and ranging
error covariance as described by Equation (2.19). In VPL, the sigmas are scaled with

projection matrix elements. These elements change with satellite geometry. Therefore,
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bounding is not a pure function of distribution parameters. Satellite geometries also add
further complexity in bounding process.  Let us recall the VPL equation and make a
simple modification by grouping the error sources in terms of their association with LGF

and aircraft,

gad,n air,n

VPL=k |3 'S (0%, +02,) @.7)

where, k=k,_, ., O G win/M, and o =0 , +0C Now, the true

gnd,n air,n pr_air,n pr_res,n *

protection level equation (4.7) including biases can be expressed as VPL, in the

following form:

’ N N
VPL, = k\/z $2(02,, +52, )+ 308 (e + ) (48
n=1

=1

air,n

where, & and [T denote true values of sigmas and means describing the true error PDFs

for the LGF and aircraft. The aircraft position error bound is desired and integrity is

maintained if the following inequality holds,

VPL > VPL_ 4.9)

In its expanded form, Equation (4.9) can be factored as follows,
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2

iszn qﬁgnd,n + air,n) N

N
82 (00 + 0%, )2 | 142 Ssi (o2, +00,) (410
n=l

N zn gnd,n air,n
2 (=2 =2 ) n=l
k zszn (ngd,n +Gair,n
n=1

We desire to define © G, _ to ensure aircraft position error is bounded at desired

gnd,n * air,n

level of probability of interest (defined by value of k). Such a bounding is ensured if for

each satellite we require that,
ngd,n 2 gﬁgnd,n Gair,n 2 g.aair,n (4' 1 1)

where the Inflation Factor (&), a common multiplier for both LGF and aircraft sigmas, is

38 o (| )

g=| 1+ (4.12)
k zsin (ﬁznd,n + 6_azir,n )
n=1

It is easily observed that the Inflation Factor (&) is a function of the true sigma and
mean values for each satellite.  Since & includes both LGF and aircraft statistical
parameters, the bounding of mean values becomes a difficult task because the LGF is
unaware of aircraft statistics prior sigma broadcast. Therefore solutions are sought that
do not depend on knowledge of aircraft error distribution parameters. Three such
solution approaches are examined here for accommodation of the possible existence of

mean values: 1) a bounding is sought without any specific information regarding LGF
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and/or aircraft error PDFs, 2) a conditional bounding is sought with predefined maximum
values of mean at LGF and/or aircraft, and 3) a direct accommodation of mean values is

sought by Alert Limit (i.e., VAL) buffering.

4.4 Unconditional Mean Bounding

An unconditional bounding method for ground error is introduced here to account for
lack of aircraft information in bounding process. For example, let us recall the expanded

form of Equation (4.9) and rewrite in the vector form as follows,

.2 ol + B @1
Where’ c= [Szlcgnd,l Szlcair,I SZZngd\Z SzNGair,N ](MN, » G= [Szlagnd,l Szlc_sair,l Szzagnd,Z SzNaair,N ]“sz) ’
H=[S,0, Suluy SpFps - sbgm_N]“sz), and N is the maximum number of satellites in

view (by the LGF) at the time of sigma broadcast. The bias term can be bounded as

(with its second norm) [Golub93],

VN[, 2 ) (4.14)

Applying this relation to inequality (4.13) results in the following expression, we can

impose a more conservative requirement on ||cs||2 as follows.
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An even more conservative, but simpler bound can be defined.

ot 2 o+ o+ 25 o, BL) e

Now, let us expand this equation in the following form,

ZS @2, +12,) @17

[Ssilon v0L,) 23 381 0, v e 2

and then establish detailed mean bounding models from (4.17) as discussed next.

Model 1. Equation (4.17) is the most general form of bounding because it assumes
that the mean values exist not only at LGF but also at aircraft. To date, the sigma
generation and error processing for aircraft ranging error is not finalized and it is yet
unclear whether biases will exist in the aircraft errors. In this analysis we consider all

possible scenarios, including aircraft biases.
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Case-1A: Mean values exist at the both LGF and aircraft. (i.e., W, #0 and

gnd,n

I, #0). In this case, the following expressions can be written for the LGF broadcast

and aircraft sigmas respectively,

gndn - J—\/ gndn 2 u‘gndn Ganrn - \/—\/G +—_uau'n (418)

It is clear that inequality (4.17) is preserved by (4.18) applied to each satellite

individually.
Case-1B: Mean values exist only at the LGF (i.e, I, #0 and [, ,=0). In this
case, the LGF and aircraft sigmas can be expressed as,
o, . 22 e, 25, (4.19)
pr_gndn T gnd,n k2 ugnd,n b4 pr air,n "" air,n ¢

In addition to the above two sub-cases, the biases may exist only at the aircraft (i.e.,

Koo, =0 and [, , #0). Sigmas are inflated by V2 in Equation (4.19).

all" n

The results in the above two sub-cases are range domain bounds for the LGF and
aircraft, respectively. As shown, these range domain bounds are sufficient to ensure a
position error overbound. We can accommodate range error biases on individual
satellites simply by assuming a zero mean and inflating sigma appropriately.  The cost

of such practicality and simplicity is an additional inflation on sigmas of aircraft even in
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the absence of aircraft mean values. In other words, even if biases do not exist at the

aircraft we still need to inflate aircraft sigmas by V2 in order to ensure a position domain
error bound. However a lower inflation may be possible in some special cases. For
example, in both sub-cases, N is assumed as maximum number of satellites in view;
however, N need only be associated with the number of satellites whose distributions
contain mean value. Such an assumption reduces the unnecessary inflation of LGF

sigmas if some satellites in view do not have biases. In this case, the aircraft still needs to

inflate its own sigmas by a factor of V2.

4.5 Conditional Mean Bounding

The solution in Model 1 does not require any knowledge of aircraft distribution
parameters at the LGF. However, if some such knowledge is available, an alternative
(less conservative) bounding model is possible. We specifically consider the case where
it is known to the ground and aircraft that there exist a pre-defined maximum value for

any bias.

Case-2A: Mean values exist at the LGF and aircraft (i.e., I, #0 and It #0). To

achieve a conservative bound, the following assumptions can be made at the LGF:

6, =0 and M, =W, ... Atthe aircraft, the following assumptions can be made:
. The resulting conservative inflation factors for the LGF and

aircraft are, respectively,
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Case-2B: Mean values exist only at the LGF (i.e., #0 and I

air,n

=0). In this

u‘ gnd,n

case, the following conservative assumptions can be made at the LGF: 6, , =0, and

I,.,=0. At the aircraft, the following assumptions can be made: G,,, =0 and

Wso =Py o~ The new Inflation Factors for the LGF and aircraft are respectively,

Ns
g, = 1+_ﬂ__'_)_ >E - 1+; m o ““‘“) (4.22)

alr N

k,[>' S5 SZ o0

zn 7 gnd ,;n m 7 air,n

In this model we assume ranging errors contain worst-case maximum mean values for
each satellite. Therefore the use of this model requires the maximum mean values to be
set prior broadcast and to also be known by aircraft. Additional work is needed for of
such a model. In spite additional tasks in the implementation, this model may
considerably reduce sigma inflation in some cases when compared to Model 1. In either

of the above sub-cases (Case-2a and Case-2b), the overbounding sigmas can be formed

as:

v

ngd .0 2 &gndﬁgnd,n Gair,n aair_air,n (4'23)

Q
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Model 2. Since the use of either Model 1 or the conditional two sub-cases alone may
result in highly inflated sigmas, aﬁ alternative is proposed here based on a synthesis of
both Model 1 and the conditional sub-cases. As a loose bound, assuming there is no
available information of the aircraft statistics at the LGF and aircraft, Model 1 can be
used under any circumstances (whether or not biases actually exist). However at the
aircraft, Model 1 and conditional bounds produce different results under different
circumstances (mean values at aircraft or/and at LGF). Since both results accommodate
mean values and we have no prior knowledge as to which bound is tighter is, an

appropriate approach is to select the minimum value among the alternative results:

ngd,n Z mln{ﬁ‘lﬁgzndn + -i_ljagznd.n k4 ggndagnd,n } Gair‘n 2 mln{\/a\ 632ir.n + i_ljgazir,n ’ aniranir,n} (4'24)

where the first components of the terms in parenthesis are obtained from Equation (4.18),
and the second terms are obtained from Equation (4.22). The additional sub-case for
Model 2 is similarly established based on existence of mean values only at LGF. Results

regarding these sub-cases are shown in Table 4.1.

4.6 Summary of Mean Bounding Models

Two mean bounding models are proposed. Each model consists of two sub-cases,
corresponding to scenarios where the biases exist at the LGF and/or at the aircraft. It is
shown that all of these models conservatively bound biases; therefore all are appropriate

in the perspective of integrity.  The significance of the Model 1 is that the bound does
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not require any specific prior knowledge of aircraft error statistics. Model 2, however,

requires some knowledge (maximum value) of predefined of error statistics

corresponding to aircraft and LGF. The summary is shown in Table 4.1.

Table 4.1 Summaries of Mean Bounding Models for LAAS

Aircraft

Model 1 IN
Case 1A i 2 \/—_\/G——I—Z—H;d—

\/‘ =2 2N =2
pr air,n _ a1r n k ua

Model 1 — N _, —
Il >
Case 1B pr_gﬂd,n 2 ﬁ\/ggnd,n + k2 ugnd,n Gpr air,n — ﬁcair,n
. 2N_, - . _ _
Gg,.d,n 2 mm{\/f G +_ugnd n > Sgnd cg\d,n} i 0 2 rnm{‘/i Gzlr n umr » vé air Oair
Model 2 .
Case 2A >s, (erw“ o)
Es =| 142 =|1
fn_;ﬂ .
G_,. Zmin «/51/02 +Nu £ G .
md,n = gnd,n kz gnd.n > dgnd ™ gnd,n Gair,n > mm{ﬁcw . ’éwo-m . }
Model 2 s
N S
Case 2B (l”'gn\l ; ) 25 u“"’""‘”'"|

S =| 1%

N
k,/zsfﬁfm
n=l

4.7 Relationship Between Biases and Alert Limits

The existence of a non-zero mean value in the correction error can result in

unacceptable integrity risk. Therefore, either the mean value must be specifically

accounted for (e.g., using one of the methods defined above) or it must be shown to have

a negligible effect on integrity. The second alternative is pursued here as an alternative.



9

The computed VPL is defined in Equation (4.7). When a mean error (W, ,.,)

exists, then the required VPL bound may be given by Equation (4.8). To illustrate the
sensitivity of VPL to non-zero means, simulation results are presented in Figure 4.2. To
generate this figure, a depleted constellation (22 out of 24 SVs) was used and a mean of
magnitude of 0.2 m was assumed for all satellites. An approximate linear relationship
between the computed VPL (using the nominal equation) and the actual value is
exhibited. The residual integrity risk incurred by the existence of the mean is evident in
the slope of this linear characteristic, which is larger than unity. In the most stringent
interpretation of LAAS requirements, a slope greater than unity is unacceptable.
Unfortunately, without sigma inflation, this situation is unavoidable since the LAAS
VPL equation does not explicitly account for non-zero means. In a more practical
interpretation of requirements, however, it is likely that the 10 m VAL requirement is
actually conservative for LAAS Category I operation. The implication is that while a
conservative ‘threshold” VALof 10 m is used for LAAS, an ‘operational’ value of
approximately 12 m may actually be sufficient to ensure integrity. In this regard, it is
only necessary to ensure that the slope of the linear characteristic is 12/10 =1.2 or lower.

A geometry-independent upper bound for the actual VPL, may be defined:

VPL_, < (1 AL ]VPL (4.25)

comp
md

where 1 = max

TR /Gp,,gnd,n|' This bounding result also applies for the H, case (failed

reference receiver) if H, is replaced with H, and k,_, , is replaced with k , (which



80

holds a minimum value of 2.878 for Category I). To ensure a limit slope of less than 1.2,
it is sufficient to limit the acceptable value of 1 (which is simply the maximum
magnitude of the mean relative to sigma in the range domain). For the worst case where

N, =12, the maximum acceptable values of 1 are 0.335 and 0.167 for the H, and H,

cases, respectively. Clearly, for both conditions to be met: 1< 0.167. Note that this is a

sufficient condition to ensure that the mean is negligible. It may be achieved either by
verifying that the range-domain mean is small enough in comparison to the standard
deviation or by inflating the broadcast standard deviation as necessary to ensure that the

sufficient condition is satisfied.
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Figure 4.2. Actual VPL, versus Computed VPL, with Depleted Constellation
(22 out of 24 Satellites)

Since the condition defined above is sufficient but not strictly necessary (in particular,
it is conservative for good satellite geometries), alternatives are possible. For example,

we may consider at the reference station (at any given time) all subset geometries that the
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aircraft may use to compute VPL. First assume the largest specification-compliant
values of standard deviation for air and residual (tropospheric and ionospheric

uncertainty) errors, and for all candidate subset geometries compute both VPL, and
VPL, . The LAAS ground station verifies that in all cases where these VPLs are less

than 10 m the addition of the unaccounted for position domain mean term does not cause
the actual bounding VPL to exceed 12 m. Note that by itself, this is not truly a sufficient
condition because the air and residual standard deviation values used at the aircraft may
be smaller than the maximum values assumed on the ground. If they are smaller at the
aircraft, it is possible that geometries exist in which both VPLs computed on the ground
exceed 10 m (and thus are not verified) but at the aircraft are slightly less than 10 m. To
protect against such occurrences, the ground station would also have to consider a range
of standard deviation values for air and residual below the largest values assumed above.
Such an approach would probably be computationally intensive, but is possible in

principle.

4.8 Conclusion

This chapter introduced a solution methodology to the bounding of biases in
broadcast correction error. Candidate bounds are generated based on the presence of
mean values not only at the LGF but also at the aircraft. These bounds are potentially
useful in theoretical modeling of bias-like ground reflection multipath as well as

experimentally observed hardware biases.
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CHAPTER YV

NON-GAUSSIAN RANGING ERROR

5.1 Introduction

The prescribed algorithms for the generation of the Protection Levels (VPL/LPL)
assume a zero-mean normally distributed fault-free error model for the broadcast
pseudorange corrections. The standard deviation of correction error is presumed by the

aircraft to be equal to the broadcast value of © for each satellite. In reality, such a

pr_gnd
model is likely to be only consistent with receiver thermal noise error and diffuse
multipath. However, additional errors such as ground reflection multipath and systematic
reference receiver/antenna errors may not necessarily be gaussian or zero-mean. Any
residual uncertainty unaccounted for in the true ranging error distribution will cause an
impact on the integrity risk. Therefore, special care must be taken when generating a
gaussian error distribution sigma for overbounding of such a non-gaussian distribution to
guarantee the integrity risk at the desired level of probability at the aircraft.  For
example, the environmental factors affecting multipath may change with time; therefore
the related uncertainty (i.e., the underlying error distribution) cannot be quantified by
experimental means alone. This is particularly true for the ‘tails’ of the distribution
where little or no empirical data will exist. Therefore, theoretical solutions are

investigated in this chapter for establishment of broadcast ¢, ,, to accommodate such

non-gaussian error sources. Furthermore, it is necessary to address position domain
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bounding directly, since bounding in the range domain does not necessarily imply

bounding in the position domain.

5.2 Ground Reflection Multipath

Multipath is a well-known cause of signal tracking error not only for GPS but also all
types of Radio Frequency (RF) applications. It is caused by undesired
reflected/diffracted signals from various surfaces in the near vicinity of the antenna.
These surfaces can be the ground or other objects such as a building, a moving vehicle, or
a tree. In general, due to the slowly varying nature of such environmental factors, it is
unlikely that the effect of multipath error distributions can be quantified by experimental
means alone. Collecting error data samples over many days (for example, for one year
over all four seasons) may not reliably describe all variations of the error. There are two
reasons for this: 1) sample sizes are limited and can be highly correlated over adjacent
days; therefore, information about distribution tails cannot be easily extracted from a
limited set of samples, and 2) for practical LGF initialization purposes it is impossible to

rely on a long term error collection prior to system initialization.

Ground reflection multipath also can be resistant to filtering. For example, satellites
at the same elevation but with different angular rates will have different multipath errors
because for satellites with higher angular rates, carrier aided smoothing of pseudorange
measurements (as discussed in Chapter 2) will for the most part mitigate multipath. This
phenomenon can be explained by the noise attenuation performance of the smoothing

filter, which is a function of filter bandwidth.
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The persistency of ground reflection multipath error after the carrier-smoothing filter

can be shown easily. For example, multipath error may be characterized by its doppler

rate as:

6 = (4nth/A)E cosE (5.1)

where h is the antenna height as shown in Figure 5.1, A is the GPS wavelength of 19

cm, and E and E are elevation and elevation rate, respectively.

Satellite

Figure 5.1 Ground Reflection Multipath

The bandwidth of the carrier smoothing filter loop is 1/2t Hz or ©n/2t rad/s, where
1 is the smoothing filter time constant. For example, if t =100 second, so the
bandwidth of the filter loop is 0.0314 rad/s. If the filter bandwidth is higher than the

multipath doppler rate then the smoothing filter is unable to attenuate the multipath error.

[Enge99].
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In Figure 5.2, an example of noise attenuation versus antenna height is illustrated by
simulating the GPS constellation of 24 satellites at O’Hare International Airport,
Chicago. In the top trace of the figure, for an antenna height of 2 meters, the filter is
unable to attenuate errors caused by the ground reflection multipath. However, in the
bottom trace, for h=10 meters, the filter is more effective in attenuating noises because
the height of the antenna is relatively tall leading to longer multipath delay and faster
multipath Doppler. The LAAS Test Prototype antennas have a height of approximately 3

meters, so most ground reflection multipath will not attenuated by the smoothing filter.
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Figure 5.2 Ground Reflection Multipath Attenuation with Respect to Antenna Height
(24 Satellites at Chicago, O’Hare Airport)
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It is noted that a discrete object’s reflection multipath error can be modeled in a
similar manner but the delays are usually longer because of the larger reflection distances
between antenna and reflection surfaces (relative to ground reflection). Therefore, the
doppler rate for such multipath naturally is high. Secondly, an important characteristic of
discrete object reflection multipath is the duration of reflected signals. The satellite
position and reflection surface orientations may produce a specific geometry that
contributes multipath for a longer duration of reflected signal but at a faster Doppler rate.
In contrast, some geometries may contribute shorter durations of multipath and slower
Doppler rates. In either case, the filter smoothing can successfully average out these
types of error. The ground reflection multipath, unlike these cases, contains both
disadvantages: longer duration of multipath and very slow doppler rate. In this chapter,
therefore, theoretical approaches are emphasized only for ground reflection multipath
error. Two candidate distribution models are proposed for the establishment and
inflation of correction error standard deviation to account for the effect of ground

reflection multipath.

5.2.1 Error Model. In this analysis, a Multipath Limiting Antenna (MLA)
implementation is assumed at the LGF. Under this assumption, the amplitude of the
ground-reflected signal relative to the direct signal is less than —30dB (0.032). The
intention of making such an assumption is not necessarily to restrict LAAS ground
implementations to the use of the MLA, but instead to make the task of demonstrating at
least one acceptable means for sigma establishment more easily tractable. In response,
an error model for ground multipath was developed from [Braasch96] by neglecting

second order and higher terms in o (since o’ <<1) as follows:



87

¢ = min[d,d]o.cos O 5.2)

where, e is the ranging error due to ground reflection multipath, o is the amplitude of
reflected signal relative to direct, 0 is the phase of reflected signal relative to direct, d is
the GPS receiver Delay Lock Loop (DLL) half correlator spacing (e.g., 0.05chip or 15
m), and &= 2hsin E is the multipath delay (see Figure 5.1 for antenna-satellite-ground
configuration). The envelope of ground reflection multipath error versus its delay is

qualitatively sketched in Figure 5.3.

Figure 5.3 Multipath Error Envelope Versus Multipath Delay

An important observation from this sketch is that the maximum ground reflection
multipath error depends on the magnitude of delay for short delays, whereas it is only a
function of correlator spacing for long delays. This implies that the LAAS Test
Prototype (LTP) ground reflection multipath is a function of delays rather than correlator
spacing because the ground reflection multipath at high elevation and at antenna height of

order of three meters do not exceed value 15 meters of correlator spacing,
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5.2.2 Randomness in Ground Reflection Multipath. In the ground reflection
multipath error model (5.2), the first term, min[6,d], is associated with antenna height,
satellite position, and receiver correlator spacing. Since these values are known for any
given site and satellite position, they may be defined as a constant value
¢ = min[2hsin E,d]. Dividing ground reflection multipath by c results in the following

normalized ground reflection multipath (NMP) error:

€é=e/c=0rcosO (5.3)

In principle, NMP is a deterministic error source. However, it is impossible to fully
characterize the physical/spatial characteristics and temporal variation in the local RF
environment. Therefore, it is treated as a random error in this analysis. In the NMP error
model, there are two variables: 1) relative signal strength, o, and 2) relative phase, 0.
These two quantities will be treated as random variables. Candidate models for their
distributions are described below. The goal is to define a worst-case, realistic distribution

for these quantities for use in the overbounding analysis.

Relative Phase Variation: A uniform phase distribution (8 varies randomly between
0 and 2m) is a widely used model distribution in RF applications. Such a model is also
consistent with the assumption that the phase varies over widely spaced days between 0
and 27 due to small changes in reflection surface height and reflectivity for a given
satellite elevation. Thus, @ is first treated as a uniformly distributed random variable:

8 ~ U(0,2n). The corresponding PDF is:
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1/2n 0<6<2n
f9(6)={ (5.4)

0 otherwise

A second model for the phase, namely, a constant value of phase (worst-case scenario), is
also considered. In making such an assumption, the effect of phase variation is directly
eliminated since a constant value of phase is passed through the cosine function. In this

case, for example, the relative phase distribution can be expressed by the following PDF.
f,(0) =0,(60—2m) (5.5)

where 8, is the Dirac delta function. It is noted that passing a zero value of phase

variation in cosine function produces the same result as above PDF. However the PDF

is described by Equation (5.5) is selected as representative case.

Since we have defined candidate PDFs for relative phase variation, now, a new
random variable, z=cos0, can now be introduced. With a uniform phase variation,

6 ~ U(O,21t), corresponding PDF of z becomes,

—1——— -1<2<1
O 56)
0 otherwise

which is plotted in Figure 5.4. It can be easily observed that this PDF is symmetric, bi-

modal, and has singularity at z=+1. Bi-modality and singularity are important
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characteristics and they lead to difficulties in bounding process since the position domain
bounding condition requires multiple convolutions of such PDFs. Therefore, spatial care

is taken when using this non-gaussian ranging error distribution for bounding.

1t - .
0.5 K :
.5 E 05 05 1.5

z
Figure 5.4. Probability Density for Random Variable z

With a constant phase, f (z) becomes:

f(2)=8,(z-1) (5.7)

In this case, the relative signal strength (o) distribution will be the only effective

random source in the final PDF (as the PDF of a product of two independent random

variables, o and z).

Relative Signal Strength: A worst-case constant value, b, is assumed for reflection

amplitude, o. The PDF is expressed as:

f (o)=06(0.~b) (5.8)
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An upper limit for this constant value can be defined from the performance of Multipath
Limiting Antenna (MLA) used in LAAS Test Prototype (LTP) as plotted in the upper

trace of Figure 5.10 as a function of satellite elevation.

5.3 Candidate Models

The NMP error is a product of o and z. Since two distributions are defined for
random variable z and a single distribution is defined for o, it is possible to generate
two model distributions for NMP error as products of oo and z. These models refer to
two special cases (limit cases): 1) an obtainable worst-case symmetric zero-mean
distribution (a bi-modal distribution) of ground reflection multipath error, and 2) a mean

value (a bias-offset) of ground reflection multipath error.

In Appendix A, additional less conservative two models for ground reflection
multipath are explored, but the usefulness of these models is contingent on their

experimental validation.

5.3.1 Model-1: Constant value of o. and Uniformly distributed 6. With this
model, the NMP error will be simply a product of a constant value of relative signal

strength (o, = b, see Figure 5.10 for b values) and the random variable, z. The resulting

PDF of NMP error is,
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1
-b<x<hb
f,(X) = nby/1—(x/b)’ (5.9)
0 otherwise
The associated CDF of NMP error is:
0 X <-b
1 1. .,Xx
E(x)=<=+=sin" = —-b<x<b (5.10)
2 T b
1 Xx>b

One simple and conservative approach to defining an overbound, is to treat NMP
error as a mean offset u=>b. In this case we may apply the results for mean
overbounding derived in Chapter 4: With 12 satellites, to protect an operation VAL of 12
m with a threshold VAL of 10 m, it must be that b < 0.167c. Thus NMP error will be

overbounded with a gaussian with ¢ > 6.02b. In the general case where corrections for

N < 12 satellites are broadcast by the ground station G 2 (5N / k )b is sufficient.

It is important to clarify that this result is directly applicable for a constant phase
model, but it is conservative for the uniform phase model under consideration. The
reason is that the NMP error actually varies between +b and—b, while the mean
overbound assumes the worst-case magnitude and sign for each satellite. To
accommodate the uniform phase model, we consider the direct convolution of the Model-

1 PDFs. In the analysis that follows, we rely on the fact that it is only strictly necessary
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to overbound above 2.878¢ (set by the minimum k_,value for VPL, ) for linear

combinations of up to 12 satellites.

Direct analytical convolution of Model 1 PDFs yields integrals that are not tractable
in closed form. The characteristic function (Fourier Transform) of the Model 1 PDF can
be readily shown to be a Bessel Function of the first kind. However, the inverse Fourier
Transform of products (equivalent to convolution in the range domain) of Bessel
Functions is not readily accessible in closed form. Furthermore, direct numerical
convolution of Model 1 PDFs is also difficult since the PDF function has singularities at
+ b, requiring impractically fine discretization for accurate results. To circumvent these

difficulties, we introduce a conservative approximation for the Model 1 PDF as follows:

f,(x) =1[8(x =b)+8(x +b)] (5.11)

The associated CDF of NMP error is:

0 -b<x
Fé(x)=<—12— _b<x<b (5.12)
|1 x21

A graphical comparison of the actual Model 1 PDF and this conservative model is shown

in Figure 5.5.
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Figure 5.5 Actual PDF Approximation to a Conservative PDF

We first consider the hypothetical limiting case of a convolution of a large number of
Independent, Identically Distributed (IID) sources. In this case, the Central Limit

Theorem (CLT) defines the necessary bounding value of sigma for the actual PDF
6=20,=b/ V2 and for the conservative model ¢ >0, =b. Unfortunately, while this

result holds when N is very large, it is not sufficient for finite values of N. For the
example case where N =9, the CDF plots in Figure 5.6 show that using a gaussian PDF

with 6 =G, =b does not always overbound in the region of interest (above 2.878 ).

10° ; 4 V
No overbiound here

= o - S S— i
/ : Gaussian

107

1- CDF(x)

10°¢ |

" i i
10 4 5 6

0 1 2

x/(cj/_N_)

Figure 5.6 Convolution of Nine Model-1 Sources Compared with Convolution
of Nine Gaussian Sources
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From this example, it is clear that further inflation of the gaussian ¢ will be
necessary to ensure CDF overbounding. For a given satellite n, we consider the NMP

error, €_, is distributed according to the model:

&, ~18(x—B,)+d(x+p,)] (5.13)

Since 6, =P, the maximum possible NMP error resulting from a linear combination

of the N sources is:

A
emax

maxién =2N:Bn =2N:0n <JNo’+0? +..+0% =4/No,, (5.14)
n=1 i

i=1 n=}

Equality (largest e__ ) in the bound above occurs when all [3, are the same (i.e., N

1ID sources). In this case, no inflation of ¢, is required when JN £2.878 (N <8) since
the error will never exceed 2.878G,. In general, an inflation/deflation factor of
JN/2.878 may be used in the range domain to ensure that the position domain NMP
error never exceeds 2.8780, . For example, for N =12, an inflation factor of 1.204 is

implied. However, a zero probability of exceeding 2.878c,, is clearly not necessary.

We only require that the gaussian bounds the actual NMP error in the CDF sense above

2.8780,,. A sufficient inflation factor of 1.05 is obtained from direct convolution of N
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(IID) sources. This result is sufficient for all N up to 12 (and conservative for N<9).

Figure 5.7 illustrates the CDF overbounding results for N =12.

o =1.204b

10°

1-CDF(%)

108 : H H H H 108 ; H H i i
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w/oVN) x/(GVN

Figure 5.7 Overbound of Twelve Model 1 Sources with Gaussian Sources

We must also explicitly consider the effect of the addition of other contributing
gaussian sources (due to diffuse MP and receiver noise). Clearly, the addition of such

errors is not an issue in the following limiting cases:

e Gaussian sources are very small: Model 1 dominates, so an inflation factor of
1.05 is sufficient.
[ ]

Gaussian sources are very large: Model 1 errors are negligible by comparison

(Model 1 inflation factor is irrelevant).

In cases where gaussian and Model 1 errors are of comparable size, the results are

again evaluated by direct convolution. Figure 5.8 shows an example result of the

convolution of N =12 Model 1 sources and N =12 gaussian sources.
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Figure 5.8 Convolution of Twelve Model-1 Sources with Twelve Gaussian Sources

An inflation factor of 1.05 was applied to overbound the Model 1 NMP error
components. Each plot in Figure 5.8 corresponds to a different relative magnitude (0.01
to 10) of gaussian to ground multipath error. In ail cases, the inflation factor of 1.05 is
seen to be sufficient to ensure overbdunding. Finally, the ground reflection multipath

sigma can be written as

6, 21.05bc (5.15)

5.3.2 Model-2: Constant value of o. and 6. With this model, the NMP error will
be simply a product of a constant worst-case value of relative signal strength (ot =b, see

upper trace of Figure 5.10) and a constant worst-case value of random variable, z. Here z
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is unity because it is the largest output of cosine function (see Equation (5.7)). The

normalized multipath error PDF for this case can be expressed as:

f.(x) =3(x —b) (5.17)
and the associated CDF as,
0 b
E={> *° (5.18)
1 x2b

With this PDF, the ground reflection multipath error is simply a bias value (i.e.,

normalized ground reflection multipath error p, 2 b):

1L, > be (5.19)

As previously discussed, the existence of a non-zero mean in the correction error can
result in unacceptable integrity risk. Therefore, the mean value must either be
specifically accommodated via sigma establishment or it must be shown to have a
negligible effect on integrity. Both of these two alternatives are pursued in Chapter 4
under an assumption of non-zero mean gaussian ranging error distribution. The non-zero
mean gaussian ranging error distribution is a combination of the above mean value
(ground reflection multipath) and other gaussian error sources (receiver noise and diffuse

multipath). The gaussian (or nearly gaussian) error sources in the broadcast correction,
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such as receiver-related noise and diffuse multipath, are obtained by the direct use of
experimental data. Proper processing for these error sources is discussed in Chapter 6

and Chapter 7 in detail.

5.3.3 Size of bc The lower trace of Figure 5.9 shows the size of product bc versus
satellite elevation for three different antenna heights. The upper trace shows the relative
signal strength,b=0.. The relative signal strength values are obtained from [Braff98]

where they are specified as minimum requirements for MLA antennas for LAAS.
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Figure 5.9 Size of Product bc Versus Satellite Elevation Angle
for Three Different Antenna Heights

5.4 Summary of Error Models

Both models are summarized in Table 5.1 as follows:
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Table 5.1 Summary of Non Gaussian Error Model

Ground Reflection Multipath

Model 1 (Symmetric bi-modal) G, =21.05bc

Model 2 (Bias-type) i, =bc

Here, ©, is a gaussian overbound of ground reflection multipath error where error
distribution is modeled in the form of the obtainable worst-case symmetric PDF and |,

is a gaussian overbound of ground reflection multipath error where error distribution is
modeled in the form of bias-type worst-case PDF. Both quantities are functions of the

product of relative signal strength and multipath delay, bc.

5.5 Conclusion

In this chapter, the effect of ground reflection multipath error has been investigated

theoretically for the establishment of broadcast G, ,,. First, a new simple multipath

error model, Equation (5.2), is developed from reference [Braasch96]. Then two non-
gaussian distributions are generated to overbound ground reflection multipath error under
limiting cases. Limiting cases are selected because of the difficulties in experimental
validation of the physical underlying distribution. Finally, it is shown that knowing the
antenna performance (b) is sufficient to describe a gaussian sigma or a mean value for

ground reflection multipath.
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CHAPTER VI

DATA QUANTIFICATION METHODOLOGY

6.1 Introduction

In Chapter 3, a detailed methodology was developed for the definition of minimum
acceptable inflation parameters for the sample standard deviation to cover estimation
uncertainties. In order for such an empirical process to be applied, it is necessary to
define a proper method to collect data into bins prior to sigma estimation. While large
bin sizes are desired to maximize sample size (to limit required inflation factors), bin size
is ultimately constrained by the need for spatial stationary of all data within the bin (i.e.,
all error data within a bin must have the same underlying distribution). In this chapter,
the quantitative resolution of this critical tradeoff, which is conceptually illustrated in
Figure 6.1, has been addressed by an adaptive estimation method known as Expanding
Bin method (EB-method). In addition, the effects of seasonal variations in pseudorange

correction error (in particular multipath) are also accounted for in the broadcast 6, -

- —

Required Inflation
Factor on Gy _gnd

Spatial Variation of Error
Distribution Within Bin

g
=

“large”
Size of Bins

Figure 6.1 Sketch of Error Variation within Bins
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6.2 Ranging Error Characteristics

In general, the pseudorange error has three important characteristics from the

viewpoint of estimation. These are:

I. Repeatability
II. Serial Correlation

III. Nonstationarity

A simple illustration of data showing these characteristics is sketched in Figure 6.2.
In the following analysis, we emphasize the quantification and accommodation of these
characteristics in LAAS broadcast sigma establishment rather than their causes and

mitigation.
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Figure 6.2 Sketch of Ranging Error Characteristics
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1. Repeatability (Day-to-Day Correlation): It is well known that the ranging error,
is generally repeatable (or correlated) day-to-day. The repeatability characteristic is
mainly caused by multipath error and can be easily observed with a stationary (fixed)

antenna when the environmental conditions are constant.

Because of the repeatability property, calibration of the error is possible in principle.
For example, use of a prior day’s error data to correct errors on the current day may
reduce ranging error size. However, calibration is not always reliable since it assumes
that environmental conditions do not change from day to day. Furthermore, the
fundamental problem regarding statistical description of the residual error distribution

and sigma bounding remains unsolved.

Another ramification of error repeatability is that sigma cannot be easily established
by an ensemble of data over many days. There are two basic reasons for this: 1) data
ensembled over many days will exhibit significant correlation effects between days (i.e.,
samples are not independent), and 2) the sigma establishment process must be reasonably

short for practical LGF initialization.

Therefore, the approach taken in this work is to generate sigma from data collected
over a single (commissioning) day and then inflate the result to account for long-term
seasonal variation of the error observed at the LAAS Test Prototype (LTP) site (where

several years worth of archived data are available).

IL. Serial Correlation: One of the most significant characteristics of the observed

ranging error is serial correlation between recorded samples of data. This correlation
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effectively limits the number of independent samples that can be assumed in the
calculation of inflation factors that account for statistical uncertainty in the estimated
sigma. In general, the number of independent samples for computing the inflation factor

will be a function of the size of the bin and the correlation time of the data within it.

II1. Nonstationarity: A nonstationary process is defined as a process in which
statistical parameters of the distribution do not stay constant in time. Elevation
dependency of multipath delay and GPS antenna gain patterns are common sources of
nonstationarity in observed ranging error. With the MLA antennas used for LAAS, these
effects are reduced, but they are still present and significant near the cut-off angle
between the MLA and the HZA (High Zenith Antenna). In addition, nonstationarity may
also exist due to azimuthal variations (e.g., discrete reflectors or diffractors) in the

antenna.

6.3 Expanding Bin Concept

The Expanding Bin (EB) method is a new approach for data-based sigma
establishment that simultaneously manages the effects of nonstationarity and serial
correlation of observed error data [Sayim02]. Traditional approaches toward data-based
sigma establishment rely on fixed bin widths, which are selected a priori with intent to
both minimize the effect of mixing of error data derived from different distributions and
maximize the number of samples within each bin. In practice, the appropriateness of
prior bin size selection is difficult to quantitatively validate and is therefore often judged

via ad hoc inspection of the data. In contrast, the EB method is an adaptive scheme
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which automatically selects the bin width at a given time (or elevation) for each satellite
separately. In practice, the result is achieved by considering not only a single bin width
but all possible bin widths at the given time/elevation. The inherent tradeoff in bin size
selection resulting from the simultaneous presence of nonstationarity and serial
correlation is gracefully controlled by selecting the worst-case inflated sigma as

representative of a given time/elevation (E).

The EB method is implemented separately for each satellite by the following means.
First, a core bin size, BI, is defined to provide a minimum allowable independent sample
size for sigma estimation. This is performed by using the entire data set from the satellite
pass to compute the error correlation time, which is in turn translated into the time
between independent samples. With this result, the core bin size, BI, is set. Second, a
maximum-size bin, BM , is defined in order to provide a wide range for estimating many
candidate sigmas. In principle, BM, can be selected to include the entire data set. A
simple sketch of inner (core) and outer bins, BI and BM, respectively, is shown in
Figure 6.3 for an arbitrary time/elevation, E. The mathematical description of the

process for a representative sigma at time/elevation E can be expressed as:
o, = max{GEj} (6.1)
¢ ,

where j is the bin width index ranging from BI to BM. After sigma is selected for a
given time/elevation using Equation (6.1), the entire process repeated at each subsequent

data epoch until the end of the data set is reached.
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Figure 6.3 Sketch of EB Concept

6.4 Sigma Computation

Given the conceptual introduction of the EB method in the previous section, the
mechanization of the process can now be described in greater detail. To aid in this

description, a flow chart of the sigma computation process is shown in Figure 6.4.
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G, = m]ﬂX{O'm}

Figure 6.4 Flow Chart for Sigma Computation

As illustrated previously (Figure 6.3), the computation starts from a predefined range
of data within BI and follows by continuously adding new measurements in both time
directions of it. Each new increased data set is passed through the computation algorithm
shown in the flow chart of Figure 6.4. First, the sample autocorrelation function (ACF)
for the selected data set is computed, and a resulting correlation time estimate is extracted
from the ACF by assuming a first order Gauss-Markov process [Gelb99]. Computed
correlation times smaller than the known time constant used for smoothing filter are
rejected and replaced by smoothing time constant. Simultaneously, the sample variances
are computed from the selected data set. The number of independent samples in the
binned data is computed by dividing the number of recorded samples in the selected data

set by twice the estimated correlation time.

Based on the number of available independent samples, an inflation factor is applied
to account for statistical uncertainty in the computed sample standard deviation. The
details of the computation of these inflation factors from an integrity risk perspective are

provided in Chapter 3. In Figure 3.20, the associated inflation factor is plotted as a
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function of the number of independent samples. It is clear that a small number of
independent samples require a high inflation factor on sigma to cover estimation
uncertainty. For each bin size, the computed sample standard deviation is inflated and
the result is stored. When all candidate bin sizes are processed, the upper bound inflated

sigma is selected as follows:

O, ;= m]ax{om,&j}: Ingglx{ocmE (0,5 )6m‘E,j} (6.2)

where o, . (n, ;) is the inflation factor given that n_g; independent samples are

m,E,j

available for reference receiver m, time epoch E, and bin width index j. &, is the

computed standard deviation of data at epoch E and bin width index j.

6.5 Benchmark Test for EB Method

Two sigma results, obtained by two different methods, are shown in Figure 6.6. The
black trace shows the sigma history generated by the EB method and the grey straight
line shows the inflated sigma generated by use of the entire data set. It can be observed,
by visual inspection of Figure 6.6, that the EB-generated sigma appears to be a faithful
representation of the variation of the error data itself (which is also shown on the plot),
because the sigma versus time profile is shaped not only by slow variation of error (serial
correlation effect) but also by the size of the sample standard deviation (nonstationarity)

of error data.
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As mentioned, the grey straight line is the sigma obtained by use of the entire dataset.
This sigma indicates that if we mix all the error distributions within a single bin (without

regard to nonstationarity effects) the sigma will not represent error variation properly.
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A comparison of the two sigmas in the CDF (Cumulative Distribution Function)
sense are shown in Figure 6.7. In this figure, the performance of both methods is
compared against a standard normal distribution by normalizing the actual error data by

each of the two-sigma curves and then plotting their corresponding CDFs.

It is clear from the figure that for the EB-normalized case, a significant margin exists
with respect to an overbounding standard normal distribution. In contrast, the standard
normal distribution is insufficient to overbound the error data normalized by the inflated
sigma of the entire data set. The basic reason for this fact is that the latter approach does
not account for nonstationarity (i.e., mixing of data from different error distributions

during the satellite pass).

6.6 Correlation Between Receivers

In the LAAS Protection Levels computations, it is implicitly assumed that ranging
errors are uncorrelated across ground receivers. In fact, the existence of any such

correlation is not strictly consistent with the VPL equations since o, _,, for an individual

reference receiver is always divided by the number of receivers to account for the
averaging of uncorrelated receiver measurements (Equation (2.19)). In reality, however,
it is possible that some measurable correlation exists. Furthermore, even if a negligibly
small correlation coefficient is computed from a finite sample set, the statistical
uncertainty in the estimate must also be accounted for. Such uncertainty is lessened, as
one would naturally expect, as the sample size used to estimate correlation coefficient

increases.
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To accommodate the effects of correlation, a detailed methodology is presented in
Chapter 3 based on the positive maximum correlation between reference receivers. For

example, effective increase on the sigma due to maximum positive correlation is given by
the factor of {/1+Mp~ for H,. However, since all the measured correlation between

reference receivers is accessible from data, this inflation result can be refined as sigma
increase based using all the estimated correlation values instead maximum value of any
receiver pair. In this case, it is assumed that the ground error standard deviation for any
given reference receiver is expressed by Equation (6.2) and then the effect of correlation
between receivers (when averaging M reference receiver errors) can be modeled as an

effective increase in G, , as follows:

o=, =B,0 (6.3)

m,E m,E

where,

/1+;pm pn 2P,
(6.4)

1 P <Pn

where, the total positive correlation between receivers is defined by, p* = (P 1P 20)

and the total negative correlation by p- =| Y (p,, |p, <0) |- Note that any inflation of

i=1 .
izgm ™
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sigma due to negative correlation is irrelevant since the initial (implicit) assumption of
uncorrelated receiver errors will already result in over-inflation in this case. The precise
relation between measured correlation and accounted uncertainty in estimated correlation

is given in Figure 3.21.

6.7 Temporal Variation of Ranging Error

In this section, the process of quantification and accommodation of temporal variation
is detailed using a representative example. The procedure is based on the relative
maximum variation between average sigmas across seasons. The goal is to establish
sigma from a limited duration of LGF commissioning data (one day) and scale by a factor

(y,,), derived from long-term archived LTP data, to account for temporal variation:

sct

The long-term temporal variation factor (7, ) is obtained using a one-year span of

LTP data, with four seasonal samplings of two weeks per season. Each day of archived
LTP data consists of error measurements from three LAAS Integrated Multipath Limiting
Antennas. A satellite (PRN#2, arbitrarily chosen in this example), for which we
previously established sigma values using the EB method on the initial day’s worth of
data, is used to generate temporal variation effects. All of the ranging errors on the
subsequent days Qf data for this satellite are first normalized by initial day’s EB sigma

values. (This is done so that the temporal variation relative to the initial day’s EB result
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can be directly observed.) Next, the standard deviations of each normalized error data set
computed. The normalized error standard deviations are then grouped into four averaged
seasonal samplings. The reason for seasonal grouping and averaging sigmas seasonally
is that we are interested in characterizing long-term, slowly varying effects due to
weather-related environmental changes. Finally, the average standard deviation of each

season is sorted from minimum to maximum, and the ratio between maximum and

minimum average sigma is selected as the temporal variation scale factor (y,,) as shown:

’Ym = max(cm,seasons )/mln(om,seasons) (6‘7)
Where Gm,seasons = [Gm,wimer Gm,spn’ng Gm,fall 0m,summer] * and 0.m,wimer ? Gm,spring 4 Gm,fall > and
G, .mme are averages of normalized error standard deviation for the winter, spring, fall,

and summer seasons, respectively.

The seasonal variation inflation factor result for the particular satellite considered
here (PRN#2) is v, =1.1362. It is important to note that in this work only a single
satellite/single receiver case is considered so far. A more comprehensive, but otherwise
identical, analysis is for multiple satellites and receivers must be conducted to define a

generalized seasonal variation inflation factor suitable for use in the LGF sigma

establishment process.
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6.8 Conclusion

A new adaptive method of sigma estimation was developed to account for two major
characteristics of empirically observed ranging error: nonstationarity and serial
correlation. In addition, a method for quantification of temporal variation was proposed.

Example applications of both methodologies using LTP data were also presented.
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CHAPTER VII

SIGMA SYNTHESIS AND EXPERIMENTAL RESULTS

7.1 Introduction

In Chapters 3 through 6, methods and models are developed to account for
independent component error sources individually. These methods address gaussian,
non-gaussian, and non-zero mean gaussian error sources. In addition a process
methodology has been developed to account for time correlated and non-stationary error
processes. This chapter provides a synthesis of these independent elements to form a
final broadcast sigma for LGF correction errors. In this regard, an experimental
illustrative example is demonstrated with the use of actual LAAS Test Prototype (LTP)
data. Finally, the performance of equipment used in the LTP is compared with the

required accuracy specifications for LAAS.

7.2 Synthesis of Broadcast Sigma

To accommodate contributing independent error sources, the establishment of

broadcast sigma © must include sigmas from the following sources:

pr_gnd

comp \,

1. Sigma Estimated From Data (o5 ): To quantify the effects of gaussian (or

nearly gaussian) error sources as well as the effects. The EB adaptive bin method
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is used here to account for time correlation and nonstationarity (mixing) of error
data within bins.
1. A limited (one day) data analysis must be done for every new instailation

and sigma must include:

» Inflation due to sample standard deviation uncertainties (o)

= Inflation due to correlation between receivers ()
2. Seasonal Data Analysis:

» Inflation due to long-term temporal variation ()

II. Sigmas Generated From Theoretical Bounds and Analyses (O,,;): To

accommodate ground reflection multipath (non-gaussian) error sources, a
theoretical sigma must be generated (using ground reflection multipath models
from Chapter 5) and combined with independently estimated sigmas from other

error sources.

III. Sigmas Generated From Receiver Noise Model (G .): To accommodate

receiver-related error sources, thermal noise and interference, a sigma must be
generated using the LAAS-defined ground receiver noise and interference model
from [McGraw00 and Enge99], and combined with independently estimated

sigmas from other error sources.
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Because neither empirical error data (I) nor theoretical approaches (II or III) alone are
adequate, the final broadcast pseudorange sigma will be a result of all these elements.

The candidate final broadcast sigma establishment process can be defined as follows:

1. Use the EB method to generate the maximum obtainable sigma values from the
data. (The EB approach implicitly incorporates nonstationarity effects and

inflation for sample standard deviation estimation uncertainty.)
O, = mJax{(Sm,E,j }: m?x{am,E (n m,E,j)(ASm,E,j} (7.1
2. Account for correlation effects between reference receivers.
Gz =B.0%e (7.2)
3. Account for long-term temporal (seasonal) error variation.
Cre = VuOe (7.3)

4. Generate the composite sigma from data.

Ope_gar =Onmp = \[ " (o) / M (7.4)

5. Combine composite sigma with the theoretical multipath sigma bound.
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¢ 2
Gi)lr__gnd,E = _J(G\Z"];p) + Gi/lP,E (7'5)

6. Combine composite sigma, theoretical multipath sigma bound, and receiver noise

to generate the final broadcast value of sigma

comj 2
o, = \/(GM,EP) + GIZVIP,E + cS;ms (7.6)

Sigma obtained in Equation (7.4) is a purely empirical result and is the basic estimate
of broadcast sigma. In the next step, the composite sigma obtained using Equation (7.5)
is a conservative representation of broadcast correction error standard deviation since it
explicitly accounts for ground reflection multipath error theoretically, even though some
of effects of ground reflection multipath may already be captured empirically in (7.4).
The last model, Equation (7.6), is an even more conservative sigma because two
independent error sources (ground reflection multipath and receiver-related noise) are

potentially captured by theoretical means and empirical means. It is noted that the last

step Equation (7.6) will not be covered in this thesis because G, . is typically very small

(Opnr 3 cm. at 40 dB-Hz and correlator spacing of 0.1 chip of the MLA). For the

interested reader, additional detail is provided in [McGraw0O and Enge99].
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7.3 Example for LTP Broadcast Sigma

In the following example execution of the procedure, a broadcast sigma is formed by
Equation (7.5) as outlined above. The following data specifications are used in this

example analysis:

o Site: FAATC/LAAS Test Prototype, Atlantic City, NJ
e BI: 1000 Recorded Samples

e BM: 5000 Recorded Samples

o Confidence Interval for Inflations: 99.9%
o  Number of Reference Receivers: 3

o Satellite: PRN#2

e Elevation Mask: 5 degrees

o Cut-Off Angle of MLA: 35 degrees

o C/No Mask: 40 dB-Hz

e Smoothing Time Constant: 100 sec

e Raw Data Sample Rate: 2 Hz

e Time of Data Record: February 2000

First, sigmas are estimated by direct use of data with the EB method. Each sigma
trace is then plotted (solid curve) in Figure 7.1 for RR1 (Reference Receiver #1), RR2,
and RR3, from top to bottom, respectively. For comparison, the actual error data is also
plotted. It is observed that the sigma traces for RR1 and RR2 are generally larger than

that for RR3. We should also note that the worst sigma values are obtained near the
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transition elevation angles (vertical dashed lines) between the High Zenith Antenna
(HZA tracks high elevation satellites > 35 degrees) and the MLA (a dipole antenna that

tracks low elevation satellites, <35 degree).

The sigmas traces of Figure 7.1 are plotted in the upper plot of Figure 7.2 for more
direct comparison of relative performance between reference receivers. The bottom plot
within the figure shows the composite (average) sigma of the three RRs. The composite
broadcast sigma of three reference receivers is about 10 cm except near the cut-off

(transition) angle regions.

Error and Sigmas (m)

0.5 1 1.5 2 25 3 3.5 4 4.5

Sample Index x 10

Figure 7.1 Sigma of EB Method for Each RR



121

T
ference Receivers
stimated-Sigmas

) ]
o 03[ B e e R e S -
= ! X
B0 0,2 e e S e b .
! /»{ < Composite; Sigma A
oYL 1 SR o AP 7ok IR NOC OIS S S N— PR NROL A B - N— ZAl
= ————— T S r? Y
a - i -
o : ;
0.5 1 1.5 2 25 3 3.5 4 4.5
4
Sample Index x 10
Figure 7.2 EB Sigmas (Individual and Composite)
Empirical CDF
10° e
10-1 = iy
N \ ~, o A O ST S -
AN o
107 R\ B
Fx) | 7 TR0 e N
RR2 U0\ o / ]
10° W ¥
‘l‘\\& S
=7 i R3 N
107 RR1 !
0 0.5 1 1.5 25 3 3.5 4
X

Figure 7.3 CDF Overbound of EB Sigmas



122

The EB-sigma-normalized error distributions (CDFs) for the three receivers are
plotted in Figure 7.3. It is clear that each reference receiver’s normalized error is

conservatively overbounded by a standard normal CDF.

Correlation effects between receivers are applied to sigmas of EB and then plotted in
Figure 7.4. For this example, the composite sigma of three reference receivers is inflated
as a function of the number of independent samples within the data. The upper curve
shows the composite sigma that is generated after each reference receiver’s sigma is

independently inflated for correlation using the values listed in Table 7.1.

Table 7.1 Correlation Values

T m=1 m=2 m=3
m=1 1 0.21 0.19
m=2 0.21 1 0.03
m=3 0.19 0.03 1

P m=1 m=2 m=3 B
m=1 1 0.38 0.37 1.33
m=2 0.38 1 0.22 1.27
m=3 0.37 0.22 1 1.26

In Table 7.1, the measured (r) and inflated (p) values of correlation between

reference receivers are given. These values are converted to sigma inflation factors (3 )

listed in the last column.
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In Figure 7.5, the effect of temporal variation is applied to sigma (after correlation
effects have been applied). For the time being, we have available only the temporal

variation inflation factor result for RR1. Therefore, we assume that the temporal inflation
factors for the other two receivers are the same (Y, =7, =¥, = 1.14). The upper curve is

the final sigma trace obtained from data-based estimation.
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In Figure 7.6, the theoretical ground reflection multipath sigma is combined with the

empirically obtained result of Figure 7.5.

The ground reflection multipath sigma is

obtained from o, =1.05bc using bc values as plotted in Figure 5.10 for antenna height

of 2.52 meter. The final composite broadcast sigma result, 6. ., is plotted in Figure 7.7
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and compared with LGF C3 and B3 broadcast sigma specifications [MASPS98]. (See

section 2.5.2 for details regarding LAAS B and C Performance types)

In this example, it is clear that the established o, ,, is greater than the C3 and B3
specifications. However, it is possible that G, ,, may be reduced by one or more of the

following means:

1) Refined calibration of code-carrier phase center offsets for the LGF data used in

this work.

2) Cut-off angle (transition angle between HZA and Dipole) can be varied to reduce

sigma peaks.

3) The sigma performance of one or two receivers may be acceptable without the aid
of the remaining receivers, which may have higher sigmas. (For this example, RR3 has
significantly lower error than the other two receivers near the peaks at 35 deg.)
Therefore, RR masking at certain elevations where sigma is large may prevent

unacceptable composite sigma results.

4) It may be possible to use smaller inflation factors based on the entire data set,

given that data normalized by EB sigmas is overbounded by the standard normal CDF.

Modified EB (MEB): An example of the application of item 4 is discussed in more

detail below. The approach is motivated by the observed result that error data
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normalized by EB-sigmas which are not inflated for statistical uncertainty are

nevertheless still overbounded by a standard normal distribution.

In Figure 7.8, the prior final sigma results are modified by scaling uninflated EB-
sigmas by the (statistical uncertainty) inflation factor derived from the number of
independent samples within the entire set (satellite pass) of data. Sigma for this case is

defined as

s

Gm,E = (Xm,all (nm,aﬂ)mjax{ém,]i,j} (77)

where o, (n,,) is the inflation factor given that independent sample size n,, Is

available for a bin width corresponding to the entire data set. Obviously, the entire data
set has more independent samples than any subset bins, so the effect of inflation due to
statistical uncertainty will be much smaller in this case. Therefore, the final sigma results
will be reduced even if the other effects (correlation and temporal variation) remain
unchanged. It is clear that the new results are significantly improved such that the C3
specification is nearly satisfied, with exceptions at the sigma peaks near the cut-off angle
regions. However, because the impetus for this modified approach to inflation is derived
primarily from empirical observations, rather than from theoretical arguments, additional

work is required to validate the applicability of these results.
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7.4 Conclusion

In this chapter, the contributions from various independent error sources are
synthesized and a final broadcast sigma is formed. The process applied to actual data
from the LTP, and results are compared against nominal LAAS specifications.

Suggested approaches to reduce ¢, ,,, are also discussed.
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CHAPTER VIII

CONCLUSIONS

8.1 Conclusions

The Local Area Augmentation System is differential GPS architecture that is to be the
next generation aircraft precision approach and landing navigation system. The most
severe design requirement is associated with navigation integrity.  Accordingly, the
focus of this research has been on navigation integrity, specifically the establishment of
the broadcast correction standard deviation (G, ,,,). It is recognized that the broadcast
correction standard deviation is a key element for quantifying the integrity risk at the
aircraft. The proper quantification of integrity at the aircraft can only be possible with

the proper establishment of ©

pr_gnd”

This research introduced a complete and detailed candidate methodology for

establishment of o, ,, to achieve the required navigation integrity. The method

involved theoretical bounds, sensitivity analyses, new estimation methods, and the use of

empirical data. It is shown that the data commissioning can be limited to a single day.
The following specific conclusions and accomplishments can be drawn from this

research:

1. With a comprehensive analysis and simulation of the GPS constellation, the

sensitivity of integrity risk was quantified with respect to statistical uncertainties
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in the knowledge of G and correlation between reference receivers. The

pr_gnd
required inflation factors to ensure a specified level of integrity risk were defined.
The results are applicable for gaussian error sources such as diffuse multipath or

reference thermal noise.

A significant effort was devoted to the bounding of possible mean values of
broadcast correction at the LGF or aircraft or both. A reliable model was
developed to accommodate the non-zero mean values. The method is simple,
effective and does not require any specific prior knowledge of aircraft error
statistics. It is potentially useful to account for systematic receiver/antenna

biases.

Ground reflection multipath, a non-gaussian error source, was investigated and an
appropriate methodology for bounding was developed. The methodology
consisted the definition of mathematical model for ground reflection multipath
error, selection of two limit-case error distributions (bias-type and symmetric bi-

modal distribution), and derivation of gaussian overbounds.

A new adaptive bin selection approach, known as the Expanding Bin (EB)
Method, was developed and successfully applied to a nonstationary and
autocorrelated ranging error data for establishment of the LGF broadcast sigma.

The results showed that:
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» Using the EB method, the upper-bound sigma trace (as a function of
time/elevation during the satellite pass) was directly extracted from the
available data.

» The EB-method implicitly accounted for nonstationarity and inflation for
statistical uncertainty simultaneously.

» Error data normalized by EB-sigmas were conservatively overbounded by
a standard normal CDF.

= Abrupt variations in sigma across bin boundaries, which exist in the fixed-

bin approaches, were naturally eliminated using the EB approach.

5. An analysis of long-term (seasonal) error variation was performed. The
maximum ratio of relative normalized temporal variation, estimated by using
seasonally sampled archived LTP data, was selected as a sigma scale factor to
account for temporal variation effects. The methodology is recommended for use

of newly commissioned LGF sites until sufficient site-specific data is collected.

6. A complete methodology was presented to incorporate all independent error
sources in the final establishment of broadcast sigma. The methodology consists
of synthesized results from theoretical model/bounds and empirical estimation of

sigma.

8.2 Recommendations and Future Work

Finally, in order to continue the effort for sigma establishment and have proper sigma

monitoring, the following items are recommended for future research:
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1) Real-time Sigma/Mean Monitoring: A new EB-based method for real-time
monitoring of sigma may be applied to determine whether or not the true sigma exceeds
the broadcast sigma. Conventional methods may not be effective because the serial

correlation and nonstationary properties of ranging error limit the effectiveness.

2) Discrete Object Reflection Multipath Modeling and Masking: Multipath error may
be caused by discrete object surfaces that possess exactly the same properties as ground
reflection multipath error (see Chapter 5) except for the length of delay and duration of
reflections. In general (not always) these types of error have longer multipath delay and
shorter duration of reflection. Therefore, carrier aided smoothing filter can successfully
attenuate most of these errors. In some airpdrts, however, this may not be the case
because of airport surroundings causing discrete object multipath error with shorter
multipath delay but longer duration of reflection. Carrier aided smoothing filter may not
attenuate these error types. Therefore, they may be hidden in the ranging error broadcast
correction. In reality, it is difficult to know exact delays and reflection surface geometry
(orientation) with respect to the antenna. Therefore, directly applying a ground
reflection multipath model to those discrete object reflections may not be easy. As future
work, it is recommended that the effects of discrete object reflection multipath, like
ground reflection multipath, be modeled as random variables with non-gaussian error
distributions. Empirical site-specific data can also be effective to define sky-masks for

strong multipath reflections events.

3) Extension of Temporal Variation Analysis and Regionalization for Multiple Sites:

It is impossible to collect and quantify a large amount of data for every LGF installation
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(for reasonably short LGF system initialization times) in order to define the temporal
variation of ranging error. However, for a selected regional LGF site (one representing
all others in the region): 1) a large amount of data can be collected, 2) results in this
thesis can be extended for more samples and multiple receivers, and 3) the applicability
can be investigated for other near by sites. In this research, a sample result is obtained
specifically for a given LTP site (the William. J. Hughes FAA Technical Center), but a

more generalized analysis should be performed as future work.
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APPENDIX A
ALTERNATIVE CANDIDATE MODELS

FOR GROUND REFLECTION MULTIPATH
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The models for ground reflection multipath used in Chapter 5 are based on two
limiting cases. The detailed validation of physical ground reflection multipath error
distribution model is avoided with these conservative models.  In this appendix,
however, two additional models are introduced for which future empirical validation may

be possible.

Model A.1: Uniformly Distributed o and 0.

In this case, the NMP error is the product of RV z=cos6 and the uniformly

distributed RV o. The resulting PDF of NMP error can be shown as

(A.1)

0 ' otherwise

This function is plotted in Figure A.1 for an example value of b=1.

1A

;
-2 -1.5 ] -0.5 [] 0.8 1 1.5 2

Figure A.1 Normalized Ground Multipath Error Distribution due to Model A.1
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It is clear that the PDF is symmetric, unimodal, and truncated. The associated CDF

of NMP error is:
0 -1>x
Ex) = 1 n+anb/x|+ “(b/x) _1)—sec'1(b/x) -1<x<1 (A.2)
T (b/x)
1 1<x

This function is plotted in Figure A.2 with a gaussian overbound as follows.

10

10°

1-CDF(x)

10

Figure A.2 Gaussian Overbounding of Model A.1

Because the PDF is truncated, it is possible to overbound the CDF of NMP error with a
gaussian CDF for all values of x. In Figure A2 it is shown that a gaussian CDF with

o = 0.438b is sufficient in this regard. The significance of this result is made evident by
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the use of a theorem derived in [DeCleene00], which states that if an RV has the

following properties:

e CDF is overbounded by gaussian for all x,
e PDF is symmetric, and

e PDF is strictly unimodal.

Then the CDF resulting from an arbitrary linear combination of such random
variables is also overbounded by the CDF of the linear combination of the corresponding
gaussian RVs for all x. Because Model A.1 satisfies these three conditions, range-

domain overbounding implies position-domain overbounding.

Model A.2: Rayleigh Distributed o and Uniformly Distributed 6.

In this case, the NMP error is the product of RV z and the Rayleigh distributed RV

o.. The resulting PDF of NMP error can be shown to be [Proakis83].

1 x
. = = A A3
f,(x) T exp{ 2b2} N,(0,b) (A.3)

Since the result is gaussian, the issue of overbounding need not be considered.
However, an appropriate value of the parameter b must be selected. In this regard, we

consider two properties of the Rayleigh Distribution:

» Case A: Maximum Likelihood Value (MLV) of é=D
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= Case B: Expected Value (EV) of € =b+/1/2

Therefore, if we select b=-30dB to be the MLV of o, any gaussian with 6 2 b may

be used. Alternately, if we choose a.=b/ m (b=-30dB is the EV of o), we may
use any gaussian such that ¢ >0.798b. Note that while some flexibility clearly exists in
the precise implementation of the Rayleigh model, the fact that the magnitude of o will
always be unbounded suggests that the results derived from the model may be
conservative. Conversely, the relative advantage of the Rayleigh model is that it can
accommodate uncertainty (should there be any) in the knowledge of the value of the

maximum reflection strength.

Summary of Error Models Results

Table A.1 Summary of Alternative Non Gaussian Error Model

Ground Reflection Multipath

Model A.1
Uniform Phase o, =0.438bc
Uniform Reflection Strength
G, 2bc
Model A.2 (Case-A)
Uniform Phase
Rayleigh Reflection Strength ¢, 20.798bc

(Case-B)
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APPENDIX B

VALIDATION OF EB METHOD
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Validation of EB-method

In Chapter 6, an adaptive estimation method known as EB-method is proposed for
proper processing of nonstationary and time-correlated data to estimate broadcast sigma
empirically.  In this section, a controlled experiment (i.e., input data with known
characteristics) is executed to determine whether or not the proposed scheme effective in
estimating sigma under a large spectrum of data scenarios (stationary and time-
correlated). In this regard, a sample function of white noise is first generated and then
nonstationarity is purposely injected into this sample function via two deterministic
functions (applied separately). Next, all three sample functions (white sequences) are
passed through filters to generate colored products. For the filter, a first order Gauss
Markov Process is used. Finally, all sample functions are conceptually located in the
Figure B.1 in terms of nonstationarity versus time-correlation to illustrate the coverage of

cases in data.
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Figure B.1 Serial Correlation versus Nonstationarity
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The filtering processes of sample functions are summarized in the Table B.1. In

Table B.1 the following notation was used: t, is correlation time, t, is time between

recorded samples, o is process standard deviation, and e is the random error.

Table B.1 Data Generation for EB and MEB

Process Standard
CASE-# Whiteness Deviation Data
(Gnom )
1 T, =1 6, =02 e, =v~N{0,6,=02)
2 T =1 6c2‘k = Kl,kcv ecz = KI,kvk ~ N(O’ &l,kcv)
3 Tc =1 Gclk = KZ,ka ec3 = Kz,kvk ~ N(O’sz.kcv)
e +V T
4 T. =20 G, =0, Coan = S ZH & a ZCXP(-?:_)
Ji-al
5 T, =20 6@4,1( = Kl,ka €oar = KikCosi
20 1<k <3000 st tVia & e =K. e
= = e 6k kY6,
6 % {_100 3000 <k <6000 Oear = Kai Oy o 1-al e

Two deterministic functions are selected to transform stationary white noise data to

nonstationary. Both functions are plotted in Figure B.2 and Figure B.3.

The function

K, is used to generate nonstationarity data in CASE-2 and CASE-4 that represent a slow

variation in sigma. Similarly k, is used to generate nonstationarity in CASE-4 and

CASE-6 which is a relatively faster variation type in sigma.

Summary

Although the experiment is performed for the EB-method, a modified method of EB

(MEB¥method as described in Chapter 6) is also considered here.  The results are
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generated and then compared for both approaches. As shown in Table B.2, both
estimation methods effectively manage both time-correlation and nonstationarity in data
through CASE-1 to CASE 6. EB provides the most conservative sigma results (i.e., the

largest sigmas which are consistent with data) while MEB provides the less conservative

sigma.
Table B.2 Summary of Results of EB and MEB
EB-method MEB-method EB vs. MEB
CASE #
CDF CDF
2 2 P
02 C oo Overbound | °* =% | Overbound 0=0,

1 v v v v v
2 v v v v v
3 v v v v v
4 v v v v v
5 v v v v v
6 v v v v v

Specific details of the results are given in the following sets of plots (case by case).

In each set of plots, there are three figures. The first figure shows the empirical data.

The second figure shows sigma results for both EB (o, = max{a6}) and MEB
]

(G = O, max{6}) including nominal (i.e., true) sigma (o
j

). The third figure shows

nom

details (selected bin width, o, and &) of the EB sigma maximization process. Finally,
in the last two figures (Figure B.22 and B.23), the details of CDF overbound (CASE-1

through CASE-6) are given for EB and MEB-method respectively.
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CASE-1 White noise, stationary and white
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Figure B.4 CASE-1 White Noise from a Normal Distribution

0.4
0.38 EB leu:,p
M N
" A
20 7
[25]
Unom
0.05
0 1000 2000 3000 4000 5600 6000

k
Figure B.5 CASE-1 Sigmas Versus Sample Index
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Figure B.6 CASE-1 EB Values Versus Sample Index




CASE-2 White and nonstationary noise (slow variation of nonstationarity)
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Figure B.8 CASE-2 Sigmas Versus Sample Index
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Figure B.9 CASE-2 EB Values Versus Sample Index
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CASE-3 White and nonstationary noise (fast variation of nonstationarity)
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Figure B.10 CASE-3 White Noise from a Normal Distribution
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Figure B.11 CASE-3 Sigmas Versus Sample Index
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Figure B.12 CASE-3 EB Values Versus Sample Index



CASE-4 Colored and stationary noise
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Figure B.13 CASE-4 Colored Noise with Filter
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Figure B.14 CASE-4 Sigmas Versus Sample Index
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Figure B.15 CASE-4 EB Values Versus Sample Index
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CASE-5 Colored and nonstationary noise (slow variation of nonstationarity)
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Figure B.17 CASE-5 Sigmas Versus Sample Index
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Figure B.18 CASE-5 EB Values Versus Sample Index
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CASE-6 Colored and nonstationary noise (fast variation of nonstationarity)
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Figure B.19 CASE-6 Colored Noise with Filter (Two Different Time Constant)
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Figure B.20 CASE-6 Sigmas Versus Sample Index
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Figure B.21 CASE-6 EB Values Versus Sample Index
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