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ABSTRACT
In this paper, we develop a new Kalman-filter (KF)-based approach for Global Navigation Satellite Systems (GNSS) positioning,
fault detection, and integrity monitoring. The filter design integrates stochastic measurement error models developed and
validated in prior work using multiple years of data (Gallon et al., 2020, 2021, 2022). These models account for uncertain
measurement error time-correlation using power spectral density (PSD) bounding (Langel et al., 2020). They are used in
this paper to provide a realistic performance assessment of recursively-implemented Advanced Receiver Autonomous Integrity
Monitoring (ARAIM).

I. INTRODUCTION
The modernization of GPS and the deployment of additional GNSS constellations have increased the number of redundant
ranging signals, leading to heightened interest in the development of ARAIM for aircraft navigation. The baseline version
of ARAIM uses ionosphere-free carrier smoothed code (CSC) measurements at one instant in time to provide a “snapshot”



navigation solution (Working Group C, 2012, 2014, 2016). Unlike conventional snapshot ARAIM, a recursive implementation
of ARAIM is able to exploit changes in satellite geometry. The accumulated geometry variations of redundant satellites from
multiple GNSS can be substantial. In Joerger and Pervan (2020), we showed that the additional exploitation of satellite motion
over time could provide superior positioning performance and tighter protection levels (PLs) than baseline ARAIM. Recursive
algorithms can therefore open the possibility to extend the scope of ARAIM applications beyond aircraft navigation, to rail,
maritime/naval, or arctic operations.

Additionally, GNSS can provide continuous worldwide absolute positioning but requires visibility of four or more satellites,
which is not always achievable in sky-obstructed environments. Also, GNSS is vulnerable to radio-frequency interference. In
contrast, inertial sensors are not directly impacted by these external factors. Inertial Navigation Systems (INS) can be used as
dead reckoning sensors to estimate displacements over time, but state estimation errors drift due to the temporal integration of
IMU errors. Combining INS and GNSS using a Kalman filter (KF) can simultaneously limit the drift in INS positioning error
and provide continuity through sky obstructions and robustness against GNSS jamming and spoofing attacks Tanil et al. (2018).
GNSS/INS integration is accomplished through measurement filtering, which requires robust modeling of stochastic errors over
time to ensure navigation integrity.

To implement either of these two applications, one must ensure that the error models implemented in the KF properly account
for time correlation. In both applications, dynamic models for the three main error sources affecting ionosphere-free GNSS
signals are needed: orbit and clock errors, tropospheric delay, and multipath.

Building on the prior work of DeCleene (2000) and Rife et al. (2006), Perea (2019) employed over-bounding theory to define
upper bounds on the variances of orbit and clock errors for both GPS and Galileo satellites. These error models are sufficient
for snapshot positioning, but not for time-sequential implementations because they do not address the stochastic dynamics of
the errors over time.

Langel (2014) derived an analytical bound on integrity risk for time-sequential linear estimators using Autocorrelation Function
(ACF) bounding. We used experimental data to evaluate ACF bounds for GPS and Galileo orbit and clock errors in Gallon et al.
(2019). But, Langel’s ACF-based approach requires continuous, cumulative storage of all data and estimator coefficients over
time, and except for short, finite-horizon intervals, is unsuitable for KF implementations. More recently, Langel et al. (2020)
introduced the concept of Power Spectral Density (PSD) bounding. The PSD bounding method, unlike ACF bounding, is not
restricted to fixed-interval implementations and is compatible with Kalman filtering.

In prior work (Gallon et al., 2020, 2021, 2022), multiple years of data were processed to derive bounding, time-correlated error
models for GNSS error sources via the PSD bounding method.

The first part of this paper outlines the specifics of our recursive ARAIM implementation. In particular, two aspects are
highlighted:

• Unlike snapshot ARAIM, which relies on dual-frequency, ionospheric-free carrier-smoothed-code measurements, re-
cursive ARAIM mainly uses raw carrier phase measurements. Dual-frequency code phase measurement errors will be
heavily influenced by antenna group delays, the dynamics of which cannot be modelled stochastically in a KF. Indeed,
antenna group delays are deterministic processes: the errors will change according to the antenna’s environment, as well
as substantial platform reorientations (e.g., turns, banks) and satellite line of sight variation. In principle, this effect is
calibratable, albeit not always easily for many platforms of interest, like civil transport aircraft. Although much the same
can be said for multipath, in this case error dynamics are highly sensitive to small scale attitude motions and further
complicated by a multiplicity of reflective surfaces on platforms with complex shapes, (again) like transport aircraft,
making multipath far more amenable to stochastic modelling. We focus on raw carrier phase measurements because their
platform/antenna dependent errors are restricted to multipath and thermal noise, which can be modelled stochastically
in a KF. Code measurements are used to aid in the initialization of floating carrier cycle ambiguities, but they will not
otherwise be used (or needed) in the recursive ARAIM KF.

• To properly account for the time correlation of the errors present in the raw carrier measurements (satellite orbit and clock,
residual tropospheric error, multipath, and thermal noise), bounding dynamic error models derived in our prior work
(Gallon et al., 2020, 2021, 2022) are used in this work. These bounding models are first order Gauss-Markov processes
incorporated into the KF by state augmentation.

The second half of this paper assesses the performance improvements provided by recursive ARAIM, using bounding dynamic
error models, with respect to baseline snapshot ARAIM, using baseline snapshot models. Additionally, a sensitivity analysis
is performed on each of the error model parameters to assess which of them impacts the KF performance (i.e. covariance) the
most.



II. INTEGRITY THROUGH POWER SPECTRAL DENSITY BOUNDING
This section offers insights into the benefits of PSD bounding when it comes to guarantying integrity.

Let us consider the simple case of a steady-state KF fed by zero-mean, stationary sensor and process noise contributions with
known PSDs. Because the KF is a linear filter, each independent error source can be evaluated separately and the results can be
added after.

Consider a scalar error input x(t) with PSD Sxx(f). The KF transfer function from x(t) to some scalar output of interest y(t)
is H(f). The KF is designed using Sxx(f). The mean of the KF output error is zero (because the input is zero-mean), and the
output error variance is:

σ2
y =

∫ ∞

−∞
|H(f)|2Sxx(f)df, (1)

Now suppose that the actual input is x(t), where Sxx(f) < Sxx(f) ∀ −∞ ≤ f ≤ ∞, and the actual output is y(t). The KF,
designed using Sxx(f), will produce a predicted output error variance that remains unchanged, i.e. σ2

y . But the actual output
error variance will be σ2

y . It is obvious from Equation (1) that σ2
y < σ2

y .

In prior work Gallon et al. (2021), we showed that this simple derivation could also be applied to more complex cases (e.g. time
varying KF). In other words, we showed that the upper bounding of the measurement errors’ PSDs ensured an upper bound for
the estimation error variance.

The new error models used in this work have been derived/analyzed extensively in prior work (Gallon et al., 2020, 2021, 2022)
based on this concept of PSD bounding (Langel et al., 2020). The three main GNSS errors impacting our measurements—
orbit and clock errors, multipath, and tropospheric delay—are modeled using First Order Gauss Markov Random Processes
(FOGMRP). The following section goes into more details on how each GNSS error model was obtained.

III. GNSS ERROR MODELS
The Kalman filter derived in this work relies on two types of measurements: iono-free code and carrier measurements. As the
signal travels between the satellite and the user, it is impacted by satellite orbit and clock errors, tropospheric delay, multipath
and thermal noise. In order for the KF estimation variance to be bounding, these errors must be modeled and accounted for
properly. This section describes each error term impacting measurements, and summarises how their models were developed in
prior work.

1. Measurements of Interest
The iono-free code and carrier measurements of satellite i at epoch k can respectively be expressed as:

ρik = rik + c
(
dtr,k − dtik

)
+mt(θ

i
k)Tk +mMP (θ

i
k)ε

i
MP,ρ,k + εiTN,ρ,k (2)

ϕi
k = rik + c

(
dtr,k − dtik

)
+ ηiIF +mt(θ

i
k)Tk +mMP (θ

i
k)ε

i
MP,ϕ,k + εiTN,ϕ,k (3)

where rik is the satellite-to-receiver range, c is the speed of light, dti is the satellite clock bias, dtr,k is the receiver clock
bias, mt(θ

i
k) and mMP (θ

i
k) are the elevation (θ) dependent mapping functions of the tropospheric delay and multipath error

respectively, Tk is the zenith tropospheric delay, εiMP,ρ,k and εiMP,ϕ,k are the code and carrier multipath errors, εiTN,ρ,k and
εiTN,ϕ,k are the code and carrier thermal noises, and ηiIF is the satellite-dependent constant floating carrier cycle ambiguity.

The ARAIM algorithm (Working Group C, 2012, 2014, 2016) relies on carrier smoothed code: the noisy (but unambiguous)
code pseudorange measurements are smoothed with the precise (but ambiguous) carrier phase measurements.

But dual frequency code measurements are heavily impacted by antenna group delays. Their dynamics are deterministic but
depend on the antenna type and antenna environment. Calibrating those group delays are in principle possible, but cumbersome
since they depend on antenna brand and model, and are sensitive to small-scale aircraft motions. Therefore, we focus on raw
carrier phase measurements, because their platform/antenna dependant errors are dominated by multipath and thermal noise,
unlike code measurements. Code measurements will only be used at the first epoch of a satellite’s visibility, to initialize floating
carrier cycle ambiguities.

Iono-free carrier (and code) measurements are impacted by 3 sources of time-correlated errors: orbit and clock errors,
tropospheric delay, and multipath. These errors have all been modeled as FOGMRP, because these processes’ time-correlated



Table 1: GNSS Error Model FOGMRP Parameter Values

Error Type Clocks Time Constant [sec] Standard Deviation [m]

Orbit and Clock GPS 18000 1.8
GAL 7200 0.65

Troposphere ��� 72000 0.09
Carrier phase multipath ��� 200 0.028

models are ”KF friendly”. The associated error models used in this work are described in the following subsections and
summarized in Table 1.

The dynamics of a FOGMRP, with parameters σ & τ , are expressed in discrete form as:

xk+1 = e−∆t/τxk +
√
σ2
(
1− e−2∆t/τ

)
ωk, (4)

ωk ∼ N(0, 1) and x0 ∼ N
(
0, σ2

0

)
where σ2

0 is the initial variance of the process (more details in Section V.3).

The following subsection briefly describes each of the error components, as well as the method used in prior work to develop
corresponding bounding, time correlated error models to be used in this work.

2. Orbit and Clock Errors
In Gallon et al. (2020, 2022), satellite clock, orbit radial, cross and along track errors for GPS and Galileo were processed over
a three year period (2018-2020). Three scenarios were considered as a good representation of user orbit and clock errors:

• Case 1: the user on earth is located at the closest distance from the satellite (i.e. nadir).

• Cases 2 & 3: the user on earth is located at the farthest distance from the satellite (i.e. horizon).

These cases encompass worst case scenarios for earth users. While, analysing the errors over those 3 years, we showed that the
orbit and clock errors could be modeled as zero mean (yearly mean error values were close to zero). Additionally, because GPS
and Galileo errors are so different, their errors were modeled separately (i.e. two different models were developed).

We used PSD bounding methods to account for GPS satellite errors and used a FOGRMP model with parameters are σGPS =
1.8m and τGPS = 5h. Similarly, Galileo errors are modeled as σGAL = 0.65m and τGAL = 2h. For simplicity, those
parameters will be referred to as σorb and τorb.

3. Tropospheric Delay
In Gallon et al. (2021), tropospheric delays were analyzed for the year 2018 at 100 locations worldwide. Two tropospheric
models were evaluated and their residuals were modeled as FOGMRP. In this work, we will rely on the GPT2w error model
(Boehm et al., 2014) to estimate the tropospheric delays, because Gallon et al. (2021) showed that its residuals were small and
unbiased globally (simpler to model).

Let us express the slant tropospheric delay in terms of its hydrostatic (dry, noted TD,k) and non-hydrostatic (wet, noted TW,k)
components:

Tk = TW,k + TD,k (5)

The slant delays can be related to the vertical delays (Zenith Tropospheric Delay - ZTD) via a dry and a wet deterministic
mapping functions. In this work, the VMF1 (Vienna Mapping Functions 1) mW and mD for the wet and dry ZTP components
(TZTD

W,k and TZTD
D,k ) are used (Boehm et al., 2014):

Tk = TZTD
W,k mW (θik) + TZTD

D,k mD(θik) (6)



The GPT2w model estimates the wet and dry ZTD separately (noted TZTD
W,GPT2w,k and TZTD

D,GPT2w,k), with residual errors noted
δTZTD

W,GPT2w,k and δTZTD
D,GPT2w,k:

Tk =
(
TZTD
W,GPT2w,k + δTZTD

W,GPT2w,k

)
mW (θik) +

(
TZTD
D,GPT2w,k + δTZTD

D,GPT2w,k

)
mD(θik) (7)

In prior work (Gallon et al., 2021), we modeled the post-GPT2w-model residuals without distinction between the wet and dry
components. Since the wet component varies faster and more randomly than the hydrostatic component, it is safe to assume that
most of the residuals estimated in Gallon et al. (2021) are wet residuals. Therefore, in this work, the tropospheric delay will be
assumed to have the following expression:

Tk =
(
TZTD
W,GPT2w,k +∆Tk

)
mW (θik) + TZTD

D,GPT2w,kmD(θik)

= TGPT2w,k +∆TkmW (θik)
(8)

TZTD
W,GPT2w,k is the total vertical tropo delay etimated by the GPT2w model. A FOGMRP is used to upper bound the zenith

delay residuals of the wet tropospheric residuals ∆Tk, and its parameters (σtrop and τtrop) are shown in Table 1.

4. Multipath
The multipath model used in this work has been derived from data collected on the rooftop of the Illinois Institute of Technology
Retalliata Engineering building, in Chicago IL. The experimental KF estimation performance assessment in the following
sections will use data from the same antenna.

Multipath error εMP,ϕ is modeled as a product of two main components: a deterministic component, which depends on satellite
elevation (θi), and a random component, which depends on the environment of the receiver:

εiMP,ϕ,k = mϕ(θ
i)ϵMP,ϕ,k (9)

The deterministic component (called a mapping function mϕ(θ
i) is expressed as:

mϕ(θ
i) =

√
f4
L1 + f4

L2

(f2
L1 − f2

L2)
2

(
1 + 2.9e−θi/10

)
, (10)

where θi is the elevation of satellite i (in degrees), and fL1 and fL2 are the (constellation dependent) transmitting frequencies
(L1 and L2 for GPS, E1 and E5a for Galileo).

Figure 1: Multipath environment



The random component (ϵMP,ϕ) is modeled separately and is propagated in the KF time update. A detailed analysis of multipath
errors was performed but is not included here to limit the length of this paper. In this analysis, we evaluated carrier phase
measurement errors due to multipath using L1 − L2 carrier phase data collected at the location shown in Figure 1. We used this
data to determine that the single-frequency carrier-phase multipath errors could be robustly modeled (i.e., PSD-upper-bounded)
using a FOGMRP with σϕ = 2.8 cm and τϕ = 200 sec.

Code measurements are used at the first epoch of visibility of a satellite to help in the initialization of the satellite’s cycle
ambiguity. The multipath on raw code measurements at low elevation is modeled as (the derivation of this model is not included
to limit the length of this paper):

ϵMP,ρ ∼ N

(
0,

f4
L1 + f4

L2

(f2
L1 − f2

L2)
2σ

2
ρ

)
, (11)

where σρ is a function of the satellite’s elevation (in degrees) and is expressed as:

σρ(θ
i) = Pρ(1)

(
θi
)3

+ Pρ(2)
(
θi
)2

+ Pρ(3)θ
i + Pρ(4), (12)

where Pρ =
[
−3.865e−6, 3.550e−4,−7.559e−3, 0.6423

]
.

Similarly, the carrier smoothed code snapshot multipath model (used in the Least Square approach of Section V.2) is modeled
with the polynomial Pρ̃ =

[
−3.81e−6, 6.155e−4,−0.0325, 0.749

]
.

5. Receiver Noise
The receiver noise of the carrier smoothed code of satellite i at epoch k is modeled as a zero mean white Gaussian noise:

σTN,ρ̃,i,k =

√
f4
L1 + f4

L2

(f2
L1 − f2

L2)
2

(
0.15 + 0.43e−θi/6.9

)
(13)

The carrier phase thermal noise εTN,ϕ,k is modeled as white Gaussian noise whose variance is related to its carrier-smoothed-
code counterpart by the equation (Joerger and Pervan, 2020):

σTN,ϕ,i,k = 0.196 σTN,ρ̃,i,k (14)

IV. KALMAN FILTER DESIGN
The following sections describe the steps employed in this work for KF design:

1. System State Selection
In previous sections, we introduced new, time correlated, upper bounding error models for each of the error terms impacting
the GNSS signals. These error models are FOGMRP, i.e. colored noise. To incorporate them in a KF, we can use state
augmentation. Considering the following state vector:

xk =
[
r3×1 b2×1 ϵMPΦn×1

∆T1×1 ηIFn×1
∆Sn×1

]T (15)

where n is the total number of satellites in view at time k, r is the 3D ENU position estimate of the receiver, b are the user clock
biases for the GPS and Galileo constellations, ϵiMP,ϕ,k are the carrier multipath errors, ∆T is the GPT2w zenith tropospheric
delay residual, ηIF is the iono-free carrier phase ambiguity and ∆S are the satellite orbit and clock residual errors.

Given n satellites in view at time k, the state vector xk will have a dimension of NKF = 3n + 6 and the measurement vector
will have a dimension of Nmeas = n.

2. System Dynamic Model
The system’s discrete dynamic model is as follows:



xk+1 = Φkxk + Γkwk (16)

where xk is the state vector described in Section IV.1, Γk maps the process noise input matrix, and the state transition matrix
Φk and process noise covariance matrix Wk are expressed as:

Φk =


I3×3

I2×2

e−∆t/τϕIn×n

e−∆t/τtrop

In×n

e−∆t/τorbIn×n

 ,

Wk =


w∞I3×1

w∞I2×1

σ2
ϕ

(
1− e−2∆t/τϕ

)
1n×1

σ2
trop

(
1− e−2∆t/τtrop

)
0n×1

σ2
orb

(
1− e−2∆t/τorb

)
1n×1

 ,

where I is the identity matrix, and w∞ is an arbitrarily large value.

The diagonal components of the augmented states follow the dynamic’s of a FOGMRP introduced earlier in Equation 4. Since
the user’s trajectory is not pre-defined, our knowledge of the position and clock dynamics is assumed to be null (large process
noise).

3. Measurement Model
The measurements are iono-free code and carrier measurements. Code measurements are only used at the first epoch a satellite
is visible, whereas carrier phase measurements are continuously used to estimate the state vector. The measurement model can
therefore be expressed as:

zk = Hkxk + νk (17)

where zk =
[
δϕ1

k ... δϕn
k

]T , and δϕi
k are the carrier measurements after corrections (GPT2w and satellite clock), νk is the

measurement noise vector, such that νk ∼ N (0,Vk), and the observation matrix Hk and measurement error covariance matrix
Vk are defined as:

Hk =

[
Gkn×3

1nGPS×1 0nGPS×1

0nGAL×1 1nGAL×1
mϕIn×n mWn×1 In×n In×n

]
,

and

Vk =

 σ2
TN,ϕ,1,k

. . .
σ2
TN,ϕ,n,k

 .

The measurement errors contained in νk are comprised of the thermal noise, all the other error terms are being handled by state
augmentation.

4. KF Equations and Initialization
The KF relies on the successive use of two equations: the time update (prediction) and the measurement update.

The time update relies on the user’s knowledge of the errors’ dynamics. At any epoch k, the state vector and covariance matrices
are updated using the following equations:

xk|k−1 = Φkxk−1|k−1, (18)

Pk|k−1 = ΦkPk−1|k−1Φ
T
k + ΓkWkΓ

T
k . (19)



The measurement update can be expressed as:

xk|k = xk|k−1 + Lk

(
zk −Hkxk|k−1

)
, (20)

Pk|k = (In×n − LkHk)Pk|k−1, (21)

where Lk = Pk|k−1H
T
k

(
Vk +HkPk|k−1H

T
k

)−1 is the Kalman gain.

Finally, the state vector estimate is initialized using the following expression:

x0 =
[
01×3 01×2 01×n 0 (δϕk − δρk)1×n 01×n

]T
, (22)

where δρk and δϕk are the code and carrier measurements of the new satellites in view, after corrections (GPT2w and satellite
clock).

And the covariance matrix is initialized as the following matrix:

P0 =


w∞I3×3

w∞I2×2

σ2
ϕIn×n

σ2
trop

ασ2
ρIn×n

σ2
orbIn×n

 , (23)

where the inflation factor α accounts for the unknown/un-modeled impact of the group delay on the code measurements and its
effect on the initial estimate of the ambiguity.

Note that position and clock states are given very high initial covariance values (w∞) because we do not assume prior knowledge
on these states, cycle ambiguity states are initialized based on the code measurement noise, and that the other states are initialized
based on their steady states values.

V. PERFORMANCE ASSESSMENT
In this section, we assess two key elements of this research:

• The value of a Kalman Filtering (KF) approach over the (more traditional) Least Squares Estimator (LSE) method.
Assuming that both methods are given the same error models, what are the performance benefits of a KF over a LSE
approach?

• The sensitivity of our KF to the error models derived in Section III.

To address these two points, we collected and processed data described in the following subsection.

1. Experimental set up
On September 5th 2022, 24 hours of data were collected at a 1 sec sampling rate using a OEM6 NovAtel receiver and pinwheel
NovAtel antenna, located on the rooftop of the Retalliata Engineering building (Illinois Institute of Technology campus). The
environment of the antenna is in Figure 1, where the red star represents the antenna location.

These 24h are divided into six 4h segments. The first 4h segment is used in subsections V.2, V.3 , V.4 and V.5. The other
segments are also used for validation in subsection V.5.

Because the orbit and clock error models derived in Gallon et al. (2020, 2022) are restricted to the GPS and Galileo constellations,
only those two constellations were processed in this paper. The number of visible GPS & Galileo satellites during the experiment
is represented in Figure 2. Note that all of the following subsections are assuming a fault-free scenario.

2. Case A: Advantage of KF over LSE with the same error models
In this first test case, we evaluate the performance improvement of a KF incorporating time correlated error models over the
LSE approach. The error models standard deviations, coefficients and mapping functions described in Section III are applied
to both the LSE and KF approaches. Since LSE is a snapshot approach, the time constants in Table 1 are not involved in the



Figure 2: GPS and Galileo satellites in view

estimation process. The LSE uses carrier-smoothed-code measurements, whereas the KF only uses code during the first epoch
of a satellite in view. For a fair covariance comparison between the LSE and the KF performance, we assume α = 1 in Equation
23 (a different value of alpha will be used in Section V.5).

Figure 3: Covariance results for the down direction

Figure 3 shows the vertical position error standard deviation curves obtained over a 4h window, for both the LSE (green curve)
and the KF (blue curve) systems. Because the Kalman filter relies on code measurements to initialize the cycle ambiguities
impacting the carrier measurements, and because raw code measurements have a larger variance than carrier smoothed code
(used in the LSE), the KF starts off with a slightly larger covariance during the first few minutes. Overall, the KF provides a
smaller and smoother covariance envelope than that of the LSE, with an asymptotic values at the meter level. One can also
note that the KF is not as impacted by satellites coming in and out of view, unlike the LSE, for instance at t = 2.8h, which sees
variations in the meter level.

3. Case B: Advantage of KF with time correlated bounding models over Fault free LSE ARAIM
In this subsection, we compare the results obtained from 3 estimation processes:

• KF with time correlated, bounding error models (as described in Section III), blue curve,

• LSE with the ARAIM error models (Working Group C, 2012, 2014, 2016), red curve,

• LSE with the ARAIM error models, but σorb = 1 m, orange curve.

These 3 different scenarios allow us to observe the performance improvements (in terms of covariance) for an ARAIM user to



switch from LSE to KF, as well as analyse the impact of the orbital error models on the current ARAIM algorithm.

Let us first compare the performance of the KF (as described in Section IV, with the error models presented in Section III)
compared to that of a LSE with the error models used in FF ARAIM (Working Group C, 2012, 2014, 2016).

In Figure 3, unlike the KF results (in light blue), the LSE results (red curve) have a mean value of approximately 5 meters and
are varying greatly as satellite go in and out of view, and as geometry changes, with variations reaching sometimes the order of
2 meters (e.g. at t = 1.5 h).

The most striking error model difference resides in the orbit and clock error models. The KF uses a 1.8 m error model (for
GPS), whereas the LSE uses the URA, which is 2.4 m for the healthiest satellites. To verify whether the orbit and clock errors
are an important contributor to these differences, a third case was studied, using the same ARAIM LSE approach, but with
σorb = 1 m. These results are represented with the orange curve in Figure 3. We can see that the covariance has dropped from
the previously observed values, suggesting that σorb does have an important impact on the covariances observed here.

4. Sensitivity Analysis
In this section, we analyze the sensitivity of the KF to the choice of FOGMRP parameters (σ and τ ), for each GNSS error.
Each of the parameters described in Table 1 are modified one by one by 20% of their initial value. To look at worsening of
the KF vertical position standard deviation, we increase the FOGRMP standard deviations and decrease the time constants by
20%. The vertical position covariance estimate resulting from this increase/decrease is denoted as σinc. These results are then
individually compared to the ”nominal KF” results (here denoted σnom) presented in previous sections.

The performance improvement metric used in this subsection is the following ratio:

q(t) =
σinc(t)

σnom(t)
. (24)

In Figure 4, the curves in various shades of blue (squares) represents the evolution of the ratio q of Equation 24 when the FOGMRP
parameters of the orbit and clock model are being modified (see red triangles and green circles curves for tropospheric and
multipath models respectively). Curves above 1 correspond to results for which the 20% modification resulted in a larger
covariance.

Figure 4: Sensitivity to the FOGMRP parameters

The orbit and clock error model seem to be the most sensitive of the 3 error types. Increasing its standard deviation σorb by
20% resulted in a 10% increase of the KF vertical position error standard deviation at t = 0 h. But this impact gets tapered
as the KF converges (i.e. for t > 30 min), with an asymptotic ratio of about 1.1 (meaning a 1% increase in the KF output
standard deviation). Of all the curve shown in this figure, the one representing a 20% decrease of the orbit and clock error
time constant (light blue curve) is the one with the largest ratio after convergence, with a 6% increase in vertical position error
standard deviation (i.e. q = 1.06). Further analysis revealed that this result was driven by the GPS constellation. At t = 0 h,
the vertical position standard deviation is very large, and the same for both σinc and σnom of Equation 24. Both KFs start from
the same very large value (ratio of 1) and filter data to converge to different values (since both time constants are now different).



Another large impact is observed with the tropospheric model (in particular its standard deviation parameter). Additional
analysis revealed that the large ratio behavior observed at t = 0.75 h is geometry dependent and due to low elevation satellites
getting in and out of view. One can notice that the satellite geometry impact on the KF output variance become negligible once
the KF has converged: similar geometry variations are present at t = 2.7 h and t = 3.7 h, but these have no impact on q. One
can also note that the 20% decrease of τtrop has had no impact on the KF vertical position standard deviation. This is because
a modification time constant from 20 to 16 hours will not be noticeable over a 4 hour KF run time.

Finally, the least impacting error model is the carrier phase multipath’s, shown in green. Modifying the time constant proves to
have a negligible impact on the KF vertical position standard deviation, and modifying its standard deviation resulted in a small
1% increase of the KF vertical position standard deviation.

The past 3 subsections analysed various aspects of the KF vertical position error standard deviations: how much lower they
were compared to LSE’s and how sensitive they were to their error models. These standard deviations must now be validated
with data. The following subsection will do so over multiple data sets.

5. Overall performance of KF with time correlated bounding models
In this section, 6 consecutive data sets of 4 h each are processed into the KF described in Section IV. The state position
estimate and its standard deviation estimate in the down direction are analysed. To validate (over a small sample of test data)
the covariance results shown in previous subsection, Figure 5 represents the temporal evolution of the vertical position estimate
ϵD, normalized by its associated standard deviation estimate σD. Each data set is represented in its own shade of blue, and the
red area highlighted in the figure represents the area for which this ratio is smaller than 1. Also note that the inflation factor
(Equation 23) on the cycle ambiguity covariance initialisation is set to 3 in order to account for the group delay impacting the
raw code measurements during the cycle ambiguity initialization.

More than 67% (i.e. 1 sigma) of the data lays within the highlighted bounds, confirming that the models developed in prior
work, and the KF implementation introduced here is valid. A more thorough analysis will be performed in future works over
longer durations (i.e. more datasets). Increasing the number of data sets present in our analysis, would provide greater statistical
confidence in those results.

Figure 5: Covariance validation results over 6 sets of 4h

VI. CONCLUSION
Over the past few years, prior work has been done in the development of robust, time correlated error models for all three of
the errors impacting iono-free GNSS measurements. These error models were put to the test in this paper, with real data and a
Kalman Filter implementation.

With the same error models as input, the KF showed smoother and lower (after convergence) vertical position error standard
deviations than its LSE counterpart. Additionally, the current ARAIM LSE implementation showed much larger and jagged
standard deviations than when using the KF approach developed in this paper. A large part of their magnitude could be attributed
to the orbit and clock error models currently in use in ARAIM.

The KF sensitivity to its FOGMRP error model was studied in turn. Results showed that increasing the time constant of any



of the FOGMRP models almost always resulted in a decreased KF vertical position error standard deviation output, whereas
increasing the standard deviation of the models had the opposite effect. The KF standard deviations were shown to be very
sensitive to orbit and clock error model modification, in particular their time constant.

Finally, one could note that the large vertical position error standard deviation decrease from the LSE ARAIM approach to the
KF appraoch presented here could extend the scope of ARAIM to other applications with more stringent requirements, such as
rail, harbor and arctic navigation.

Future work also needs to be performed by extending those results to a faulted scenario, in order to truly assess the performance
of our KF and its error models under safety critical conditions.
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