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ABSTRACT
In this work, we present a Global Navigation Satellite Systems (GNSS) satellite fault detection, identification, and exclusion
method for an integrated GNSS/Inertial Navigation System (INS) tightly-coupled navigation architecture. Observed satellite
fault profiles and magnitudes are taken as a baseline to design the monitor. Normalized innovations for each satellite are utilized
to observe the respective satellite faults on each channel. A sufficient test statistic for each satellite channel is derived using the
generalized likelihood ratio test (GLRT). We develop a method for quantifying missed detection rates given fault profile and
magnitude. This developed methodology is capable of providing protection levels using the INS-only coasting solution. We also
describe an identification and exclusion method using consecutive windows of the monitor without the need for running parallel
Kalman filters (KF). We validate the developed algorithm for the detection, identification and exclusion of faulty satellites using
simulated fault scenarios.

I. INTRODUCTION
Today, GNSS is widely used for positioning, navigation, and timing (PNT) applications due to its accuracy, continuity, and
integrity. Due to its use in safety-critical applications such as aircraft landing, autonomous terrestrial vehicles etc., a threat
to GNSS integrity can endanger public safety. Integrity is defined as the probability of a position estimate error exceeding
a given alert limit due to undetected faults. The integrity of GNSS systems can be compromised due to undetected satellite
faults resulting in inaccurate timing or positioning. Receiver Autonomous Integrity Monitoring (RAIM) was developed as a
method to detect GPS satellite faults using the redundancy of multiple satellites (Parkinson and Axelrad (1988), Angus (2006)).
This has recently been extended to Advanced Receiver Autonomous Integrity Monitoring (ARAIM), which includes multiple
constellations (Blanch et al. (2015)). Over time, auxiliary sensors such as inertial measurement unit (IMU) were also used to
aid in satellite fault detection (Brenner (1996)). Modern navigation architectures typically utilize integrated GNSS/INS systems
for navigation; hence no additional hardware implementation is required. Also, due to providing better accuracy, continuity,



and protection levels, the integrated GNSS/INS KF architecture is favored over the snapshot positioning methods such as the
least-squares solution. Fault detection algorithms such as RAIM and ARAIM typically utilize solution separation between
satellite subsets for detection (Blanch et al. (2015)). Solution separation measures the effect of the fault on the position domain
(or any specific state(s)) directly. As a result, it does not require defining a specific temporal or spatial fault profile, making the
evaluation of the system integrity risk valid for any type of fault without the need to run many simulations to cover all types of
faults the system may have. However, RAIM and now ARAIM use snapshot navigation solutions (least squares, for example).

In integrated GNSS/INS systems with KF implementations, however, due to time correlation, it is not sufficient to remove a
faulty sensor measurement at the time of detection. This is true because the fault (for example a slowly growing one) may have
already corrupted the filter before the test statistic exceeded the detection threshold. Also, to use solution separation parallel
sub-filters, one for each fault hypothesis, need operate for detection. Further, to maintain detection capability after exclusion of
a fault, it would be necessary to continuously run parallel sub-filters for each sub-filter, thus greatly increasing the computational
and memory cost as the number of fault hypotheses increases. Other fault detection methods such as innovation-based detectors
(Joerger and Pervan (2013); Tanil et al. (2018)), the Euclidean distance method (Knowles and Gao (2023)) and other different
methods Quartararo and Langel (2022); Wendel (2022)) have been proposed. These, like solution separation, are general
detection approaches that do not assume any prior knowledge of fault temporal behavior. They avoid the computational burden
of KF solution separation approaches, but only at the expense of considerable degradation in detection performance over time.

Table 1 from DO-384 (2020) summarizes the different fault modes, their ranges and fault rates from data on observed faults
in GPS satellites from the year 2000 to 2016. Our novel approach to fault detection for an integrated GNSS/INS system aims
to first provide a detector for GNSS faults based on the history of observed faults and second reduce the computational cost
by detecting and excluding faults on individual satellites using a single KF. In section II we provide a brief background on
tightly coupled GNSS/INS and then introduce the satellite fault channel detector. The results of an example detection scenario
are shown and discussed in section III. In section IV we detail the identification and exclusion algorithm to be utilized once
detection occurs. Section V contains details about the sequential monitor window concept with protection levels. Finally, we
summarize the work in section VI. We also provide relevant derivations in the appendices.

Table 1: Summary of assigned fault rates for position testing from Table G-4 in (DO-384 (2020))

Fault mode Range Fault Rates (10−5/hr/Satellite)
Ramp 3 cm/s - 1 m/s 10/15
Step 300-700 meters 3/15

Acceleration 0.00005 - 0.025 m/s2 2/15

II. SATELLITE FAULT CHANNEL DETECTOR
We consider a vehicle employing INS and GNSS sensors integrated using a KF to estimate its position, velocity and attitude.
The dynamics of the GNSS/INS system, augmented as needed with sensor error state dynamics, are linearized to obtain the
process model utilized in the KF,

xk+1 = ΦΦΦk xk +ΓΓΓwk wk, (1)

where xk is the state vector, ΦΦΦk is the state transition matrix, ΓΓΓwk is the process noise model matrix, and wk is the additive white
process noise with a respective covariance matrix Qk. The measurement model is

zk = Hk xk +νννk, (2)

where Hk is the observation matrix and νννk is the measurement noise with a respective covariance matrix Vk.

The innovation vector γγγk with respective covariance matrix Sk at time epoch k is defined as

γγγk = zk −Hk xk, (3)

where x is the state vector estimate prior to the measurement update at time epoch k. Innovations is the instantaneous difference
between GNSS observations and predicted measurement with INS.

At any time k, the normalized fault-free innovation vector γ̃γγk of the KF is

γ̃γγk = S− 1
2

k (zk −Hkxk), (4)



which follows a normal distribution
γ̃γγk ∼ N (0,I). (5)

We call each element of this vector a satellite innovation channel and a fault appearing in any satellite will appear on its
respective channel first. The fault-free normalized innovations of each channel over time are time-independent white Gaussian
noise (WGN).

In the faulted scenario the normalized innovation vector at time k is

γ̃γγ
f
k = γ̃γγk +S− 1

2
k (f̄k +bk), (6)

which follows a normal distribution
γ̃γγ

f
k ∼ N (S− 1

2
k (f̄k +bk),I), (7)

where f̄k is the current fault vector, and bk is the cumulative effect of prior faults (f̄1:k−1) on the current innovation vector. Note
that superscript f is used to denote variables related to faults.

The cumulative term bk for k > 1 is
bk =−HkΦΦΦk[ΩΩΩk−1 +Kk−1βββ k−1], (8)

where,
ΩΩΩk−1 = ΦΦΦk−1[ΩΩΩk−2 +Kk−2βββ k−2], (9)

and
βββ k−1 = f̄k−1 −Hk−1ΩΩΩk−1, (10)

where K is the Kalman gain. The derivation for this cumulative term is in appendix A.

Using equations (6) through (10), the deterministic effect of current and prior faults on normalized innovations can be obtained.
As an example, Figure 1 illustrates the effect of a ramp fault of magnitude 0.1 m/s on the normalized innovations for N epochs.
Recall from Table 1 that the ramp fault has been the most observed fault mode.

Figure 1: Example deterministic effect (D) of ramp fault on normalized innovation.

If we observe the normalized innovations for exposure time N, the deterministic impact (D1:N) of fault on nth satellite is

n
γ̃γγ

f
1:N

= D1:N +n
γ̃γγ

1:N
(11)



where nγ̃γγ
f
1:N

is the nth channel normalized innovation time series when a fault is present, and nγ̃γγ
1:N

is the nth channel normalized
innovation time series when no fault is present. As a starting point, we approximate the deterministic impact (D1:N) as a linear
ramp,

D1:N ≈ Mθ = [1 2 3 . . . N]T θ (12)
where θ is the unknown magnitude and M is the ramp subspace vector. Here, θ represents the slope of the ramp.

We formulate the problem as signal detection of unknown amplitude (θ ) in WGN (nγ̃γγ
1:N

) for each satellite channel. This is a
Bayesian linear model (a = Mθ +w) detection problem of unknown signal parameter (θ ) additive to Gaussian noise (w), with
null hypothesis H0 : θ = 0, and alternative hypothesis H1 : θ ̸= 0. For this type of detection problem where signal parameter and
sign are unknown, no uniformly most powerful (UMP) test exists and a generalized likelihood-ratio test (GLRT) is the standard
approach (Kay (1998)).

We have an idea i.e. model of the impact of fault (M) and we try to estimate θ assuming H1. θ̂ is the maximum likelihood
estimator of θ under H1,

θ̂ = (MT M)
−1MT n

γ̃γγ
f
1:N

, (13)

which is correlated against nγ̃γγ
f
1:N

to see whether the H1 we assumed is true or not. Using GLRT we derive (Appendix B) the test
statistic nq f

N
for each nth satellite and decide H1 if,

nq f
N
= (n

γ̃γγ
f
1:N

)T Mθ̂ > TN , (14)

where TN is the threshold.

The estimator-correlator test statistic can be simplified as

nq f
N
= MT Mθ̂

2. (15)

Under fault-free conditions the test statistic is central Chi-squared distributed with a single degree of freedom

nqN ∼ χ
2
1
. (16)

The threshold TN can thus be determined from inverse CDF of Chi-square distribution given the false alarm requirement.

For fault with actual θ magnitude, the test statistic (nq f
N

) is non-central Chi-squared χ2
1
(λ ) distributed with non-centrality

parameter
λ = MT Mθ

2. (17)
The missed detection probability for this detector is

PMD(M,θ ,N) = 1−Q
(

Q−1
(

PFA

2

)
−
√

λ

)
+Q

(
Q−1

(
PFA

2

)
+
√

λ

)
, (18)

where Q is the Q-function of standard normal distribution, and PFA is the probability of false alarm requirement for each satellite.
Given the PMD requirement, we can determine the minimum window length Nmin to ensure the detection of any magnitude larger
than θ .

III. RESULTS
We evaluate the performance of the monitor for an example scenario where an aircraft is cruising at level flight using GPS
constellation and a navigation grade IMU (specifications in appendix C). Single frequency GPS code and carrier phase
measurements with a measurement frequency of 2 Hz is utilized. A total of 6 satellites are in view with a ramp fault of
magnitude 4 cm/s occurring in satellite vehicle (SV) 1. Monitor false alarm allocation is 10−5 per satellite. Figure 2 illustrates
the detection result for this example scenario. The faulted SV 1 can be seen to have increasing test statistic over time with
detection being triggered just over a minute. The test statistic growth mimics the deterministic effect of the ramp fault with
additive noise.

There are several factors that contribute to satellite fault detection in a KF architecture. First, the IMU dynamic model plays a
role in fault detection since it provides measurements that are transformed into range domain to be compared directly to satellite
measurements. The higher the grade on IMU the faster the detection of satellite faults. Second, once the innovations are



transformed into the position domain, redundant satellites contribute to the detection of faulty satellites. Third, the higher the
number of fault-free satellites, the faster the detection of faults. Lastly, the GNSS error model dynamics such as cycle integer
ambiguity and clock bias error models also contribute to the detection of satellite faults.

Figure 2: Example detector performance for satellite ramp fault (4 cm/s) on SV 1.

IV. IDENTIFICATION AND EXCLUSION
Once detection occurs, we need to identify the faulty satellite and exclude it from the KF. A faulty satellite will typically trigger
its channel test statistic but due to the recursive nature of KF, the fault on one satellite might trigger test statistic of other
satellite channels as well. This makes the identification and exclusion of faulty satellites difficult. We propose an identification
and exclusion algorithm that also does not require a bank of parallel KF. Figure 3 illustrates the process of faulty satellite
identification and exclusion.

Figure 3: Illustration of identification and exclusion algorithm.



First, at the start of every detection window, we propose to store initial conditions (such as x̄0 and P̄0). If the previous detection
window did not trigger a fault, we can say that the probability of fault not being detected at the start of the current window is
PMD . As we march forward in time, we also store the GNSS and IMU measurements (z0,z1,z2, ..). This is the main filter with all
the satellites. Second, once detection is triggered, we sort the test statistic in descending order. The reasoning for this is that the
faulty satellite will typically be the one with the largest test statistic. Third, we exclude the satellite with the largest test statistic
from the time that we started the current detection window. Using the fault-free initial conditions and the stored measurements,
we propagate the sub-filter which excludes the satellite with the largest test statistic. Fourth, we let the monitor detect any faults
inside this sub-filter and if we do not trigger any detection, it is confirmed that the excluded satellite was faulty, and we continue
our navigation with the sub-filter. Fifth, if the monitor triggers, it means that the faulty satellite is still within the set of this
sub-filter. We then exclude the satellite with the next largest test statistic and re-propagate another sub-filter with the remaining
satellites. This process continues until we can find a sub- filter that does not trigger any detection. This algorithm allows us to
only utilize the available computation power only when a fault detection is triggered, unlike solution separation which always
requires running a bank of parallel KF.

V. SEQUENTIAL WINDOWS AND PROTECTION LEVEL
The minimum run length Nmin for the monitor is determined by Equation (18) and sets the upper limit on the monitor time
window. Equation (18) is valid only if fault onset and monitor start time are the same. To capture the fault onset at the start of
the detection window, the monitor system is implemented using consecutive fixed-length windows of length Nmin (Figure 4) with
the monitor initialized at the beginning of each window and terminating at the end of each window. A new monitor window is
opened at each new GNSS measurement epoch and closed Nmin epochs later. Figure 4 illustrates the idea, showing (conceptual)
PL. At any given instance of time, there will be a set number of monitor windows running, the false alert requirement allocation
for each monitor can be equally divided among these monitor windows to determine the thresholds for each. This approach is
conservative since the test statistic for the different monitors will be correlated, but it is easy to implement.

We propose the INS-only coasting solution for determining the protection level. Given that the detection window is limited by
Nmin, we can compute the length of time for a protection level originating from an INS-only coasting solution. The INS-only
coasting solution drifts over time and thus the window length Nmin helps to terminate the protection level before it gets unbounded.
Thus, this sequence of detection windows with INS-only coasting provides a continuous bounded protection level throughout
the exposure time. For even centimeter-level ramp faults, the detection window length does not exceed a few minutes, thus
ensuring that the protection level drift does not go unbounded in such a way that typical alert limit requirements are triggered.

Figure 4: Illustration of sequential monitor windows with increasing protection levels.



VI. CONCLUSION
We proposed a satellite channel detector that leverages prior fault mode information. The detector was optimized to the threat
space constrained by fault mode and utilized satellite channel-specific sufficient test statistic to detect faults. We quantified
the minimum length of the detection window which would ensure the detection of faults larger than a specific magnitude. We
also proposed a satellite identification and exclusion algorithm which no longer requires a bank of parallel KF. A sequence of
detection windows ensures satellite fault onset capture. Lastly, we propose a protection level using INS-only coasting which is
drift-limited by detection window length Nmin.

A revised test statistic derivation without the linear approximation of fault impact will be presented in details in a future work.
We also aim to generalize the fault mode with a polynomial profile which would encompass a larger threat space and allow
generalization of the detector. We will evaluate the parametric performance of this detector against different fault profiles and
detection window lengths to obtain missed detection bounds for a given threat space.
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where γ1 is the fault-free innovation.

Now, for time k = 2, the faulted innovation vector is

γ
f
2 = γ2 + f̄2 −H2ΦΦΦ2[K1 f̄1] (21)

We introduce three new variables here, Ω, β , and b, which are defined for k > 1 as

ΩΩΩk−1 = ΦΦΦk−1[ΩΩΩk−2 +Kk−2βββ k−2] (22)

βββ k−1 = f̄k−1 −Hk−1ΩΩΩk−1 (23)

bk =−HkΦΦΦk[ΩΩΩk−1 +Kk−1βββ k−1] (24)
and zero for k ≤ 1.

For k = 2
ΩΩΩ1 = ΦΦΦ1[ΩΩΩ0 +K0βββ 0] = 0 (25)

βββ 1 = f̄1 −H1ΩΩΩ1 = f̄1 (26)
and

b2 =−H2ΦΦΦ2[ΩΩΩ1 +K1βββ 1] (27)
Substituting Equation (25) and (26)in Equation (21) we rewrite

γ
f
2 = γ2 + f̄2 −H2ΦΦΦ2[ΩΩΩ1 +K1βββ 1] (28)

Again, substituting Equation (27) in Equation (28)

γ
f
2 = γ2 + f̄2 +b2 (29)

Now the expression for faulted innovation vector for time k = 3 is

γ
f
3 = γ3 + f̄3 −H3ΦΦΦ3[ΦΦΦ2K1 f̄1 +K2[f̄2 −H2ΦΦΦ2[K1 f̄1]]] (30)

Again for k = 3
ΩΩΩ2 = ΦΦΦ2[ΩΩΩ1 +K1βββ 1] (31)

βββ 2 = f̄2 −H2ΩΩΩ2 (32)
and

b3 =−H3ΦΦΦ3[ΩΩΩ2 +K2βββ 2] (33)
Substituting Equations (25) and (26) in (31) we rewrite,

ΩΩΩ2 = ΦΦΦ2[K1 f̄1] (34)

Substituting Equations (34) in (30)
γ

f
3 = γ3 + f̄3 −H3ΦΦΦ3[ΩΩΩ2 +K2[f̄2 −H2ΩΩΩ2]] (35)

Now substituting Equation (32) in (35)
γ

f
3 = γ3 + f̄3 −H3ΦΦΦ3[ΩΩΩ2 +K2βββ 2] (36)

Finally, substituting Equation (33) in (36)
γ

f
3 = γ3 + f̄3 +b3 (37)

Thus, in general we can write,
γ

f
k = γk + f̄k +bk (38)

where bk is the cumulative effect of prior faults on current innovation vector and is given by Equation (24).



B. Derivation of test statistic for detection of deterministic fault with unknown amplitude
The normalized innovations vector from Equation (11) for exposure time N with the deterministic impact (D1:N) of fault on nth

satellite is
n
γ̃γγ

f
1:N

= D1:N +n
γ̃γγ

1:N
(39)

Using the approximation
D1:N ≈ Mθ = [1 2 3 . . . N]T θ (40)

where θ is the unknown amplitude of fault impact,
n
γ̃γγ

f
1:N

= Mθ +n
γ̃γγ

1:N
(41)

with, null hypothesis H0 : θ = 0, and alternative hypothesis H1 : θ ̸= 0. Using generalized likelihood ratio test (GLRT), given two
mutually exclusive hypotheses H0 and H1, which for some observation nγ̃γγ

1:N
have conditional probability densities p0(

nγ̃γγ
1:N

|H0)

and p1(
nγ̃γγ

1:N
|θ̂ ,H1), the likelihood ratio given an arbitrary threshold T (N) is

Λ(n
γ̃γγ

1:N
) =

p1(
nγ̃γγ

1:N
|θ̂ ,H1)

p0(nγ̃γγ
1:N

|H0)

H1
≷
H0

T (N) (42)

where θ̂ is the maximum likelihood estimate of θ under H1 (Kay (1998))

θ̂ =
∑

N
k=1

nγ̃γγ
k
Mk

∑
N
k=1 M2

k
(43)

Expanding Equation (42)

Λ(n
γ̃γγ

1:N
) =

1

(2π nσ)
N
2

exp
(
− 1

2 nσ2 ∑
N
k=1(

nγ̃γγ
k
−Mkθ̂)2

)
1

(2π nσ)
N
2

exp
(
− 1

2 nσ2 ∑
N
k=1

nγ̃γγ
k

2
) H1

≷
H0

T (N), (44)

where nσ2 is the variance of normalized innovation for nth channel. Substituting nσ2 = 1, the above equation simplifies to

Λ(n
γ̃γγ

1:N
) =

exp
(
− 1

2 ∑
N
k=1(

nγ̃γγ
k
−Mkθ̂)2

)
exp
(
− 1

2 ∑
N
k=1

nγ̃γγ
k

2
) H1

≷
H0

T (N), (45)

Taking log on both sides we obtain

−1
2

N

∑
k=1

(
−2θ̂Mk

n
γ̃γγ

k
+ θ̂

2M2
k

) H1
≷
H0

lnT (N), (46)

Using Equation (43) for θ̂ in Equation (46) above and simplifying

−1
2

(
−2θ̂ θ̂

N

∑
k=1

M2
k + θ̂

2
N

∑
k=1

M2
k

) H1
≷
H0

lnT (N), (47)

Simplifying the above equation

θ̂
2

(
N

∑
k=1

2M2
k −M2

k

) H1
≷
H0

2lnT (N), (48)

Simplifying further

θ̂
2

(
N

∑
k=1

M2
k

) H1
≷
H0

2lnT (N), (49)



Equation (49) can be equivalently written as defining our test statistic

nq f
N
= MT Mθ̂

2
H1
≷
H0

2lnT (N) (50)

C. Sensor specifications

Table 2: Navigation grade IMU specifications

Parameter Value Units
Velocity random walk 1.43×10−2 m/s/

√
h

Accelerometer bias instability 1×10−2 mg
Accelerometer bias repeatability 2.5×10−2 mg
Accelerometer bias time constant 3600 s

Angular random walk 1×10−3 deg/
√

h
Gyroscope bias instability 3.5×10−3 deg/h

Gyroscope bias repeatability 3×10−3 deg/h
Gyroscope time constant 3600 s
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