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Abstract 
 

In this paper, we present a methodology for detecting and excluding spoofed Global Navigation Satellite System (GNSS) 

signals by decomposing Complex Cross Ambiguity Functions (CCAF) into their constitutive components. Building on previous 

work in [1] and [2] utilizing CCAF decomposition and inverse Receiver Autonomous Integrity Monitoring (RAIM), we 

integrate CCAF decomposition with an inertial sensor in dynamic environments [3].  This integration enables us to identify 

and exclude spoofed signals, ensuring continuous tracking of the authentic signal for navigation. The method is effective in 

spoofing scenarios that can lead to Hazardous Misleading information (HMI) and are difficult to detect by other means. It can 

identify spoofing in the presence of multipath and when the spoofing signal is power-matched with offsets in code delay and 

Doppler frequency that are close to the true signal. Using the proposed approach, spoofing can be identified at an early stage 

within the receiver for dynamic users. 

 

 

INTRODUCTION 

 

Global Navigation Satellite Systems (GNSS) are the foundation of modern technological infrastructure. GNSS is used for 

Positioning, Navigation, and Timing (PNT) worldwide with applications in aviation, automated vehicle systems, 

telecommunication, finance, and energy systems. GNSS signals are vulnerable to Radio Frequency Interference (RFI) such as 

jamming and spoofing attacks. Jamming can deny access to GNSS service while spoofing can create false positioning and 

timing estimates that can lead to catastrophic results. This paper focuses on the detection of intentional RFI known as spoofing, 



a targeted attack where a malicious actor takes control of the victim’s position and/or time solution by broadcasting counterfeit 

GNSS signals [4]. 

 

Different methods have been proposed to detect spoofing, such as: received power monitoring, which monitors the response of 

automatic gain control (AGC) to detect when an overpowered spoofing signal is broadcast; signal quality monitoring (SQM) 

[5], which tracks the distortion of the autocorrelation function; RAIM checks on inconsistent sets of five or more pseudoranges 

to allow the receiver to detect spoofing with one (or sometimes) more false signals; signal direction of arrival (DoA) estimation 

techniques using directional antennas, or moving antennas, in a specified pattern to observe if all satellite signals are broadcast 

from the same direction; inertial navigation system (INS) aiding [3], which is based on drift monitoring; and others [6]. Each 

of these methods have their own advantages and drawbacks. 

 

CAF (Cross Ambiguity Function) monitoring approaches [7], which exploit only the magnitude of the Complex CAF (CCAF), 

can be used to detect spoofing but face difficulties in environments with multipath and when the Doppler frequency and code 

phase of the received signal are closely aligned with the spoofed signal. There are machine learning and deep learning 

approaches (for example convolutional neural networks) to detect GNSS spoofing attacks using CAF, but these methods depend 

upon the availability of spoofing training data and are limited to the datasets upon which they are trained [8]. A sampled signal 

can be represented in the form of a complex number, I (in-phase) and Q (quadrature), as a function of code delay and Doppler 

offset. In all CAF monitoring concepts prior to our work in [1] and [2], a receiver performs a two-dimensional sweep to calculate 

the CAF by correlating the received signal with a locally generated carrier modulated by pseudorandom code for different 

possible code delay and Doppler pairs. Spoofing is detectable when two peaks in the CAF are distinguishable in the search 

space. This could happen, for example, if a power matched spoofed signal does not accurately align the Doppler and code phase 

with the true received signal. In practice, because detection using the CAF is not reliable under multipath or if the spoofed 

signals are close to the true ones, we instead exploit the full CCAF. 

 

We can decompose a CCAF made up of N contributing signals by minimizing a least-squares cost function [1]. Because the 

optimization problem is non-convex, we implement a Particle Swarm Optimization (PSO) algorithm to find the global 

minimum. The algorithm can decompose a sum of GNSS signals for a given satellite (i.e., true, spoofed, and multipath) into 

its respective defining parameters—signal amplitudes, Doppler frequencies, code delays, and carrier phases. The same process 

is performed for each visible satellite, and the estimated code phases are then used in the next step, which is the detection 

function. Post-decomposition, a signal associated with a given satellite outputs three extracted code phases, associated with the 

true, spoofed, and multipath component. At first it is unknown which code phase corresponds to either authentic signal or 

spoofed signal. Decomposed code phases are used for direct position estimation by combining different combination sets. Out 

of all the combination sets, only two will be consistent in a RAIM sense: when all the authentic signals from each PRN are 

together in one set, and when all the spoofed signals from each PRN are together in another. The multipath code phases would 

not be self-consistent. Therefore, we assert that spoofing is happening if more than one set of code phases passes a RAIM test. 

The process is termed “Inverse RAIM” because detection is based on an extra set “passing” the RAIM test [2]. Finally, we 

integrate an inertial measurement unit (IMU) in dynamic scenarios to identify and reject the spoofed signal and enable 

continuous tracking of the true signal. Spoofing detection and mitigation performance is validated against RF-simulated 

spoofing scenarios using Safran’s Skydel GNSS simulation engine. 

 

Complex Cross Ambiguity Function (CCAF) 

 

The incoming digitized signal is mixed with two locally generated replicas of the carrier signal 𝑓𝐷̅, differing in phase by a 

quarter cycle, 𝜃̅ and 𝜃̅ + 𝜋 

2
. During digitization, the signal is sampled at a sampling frequency based on the Nyquist rate to 

reliably capture the signal form. It is again mixed with a local replica of the PRN code with delay 𝜏̅ and then integrated over a 

period called coherent integration time 𝑇𝐶𝑂 as shown in Figure 1. Here 𝑓𝐷̅ and 𝜏̅ are our measurements and these two signal 

components are called in-phase and quadrature component. 

 

The in-phase 𝐼 and quadrature 𝑄 components of an uncorrupted output signal (i.e., no spoofing or no multipath) with amplitude 

√𝐶 are shown in Equations (1) and (2). When presented in complex form, as in Equation (3), the in-phase and quadrature 

components consist of the real and imaginary parts of the signal, respectively, and are referred to as the CCAF.  The coherent 

integration time 𝑇𝐶𝑂 can range from 1 to the length of a data bit, with the upper limit designed to avoid integration across 

boundaries of a navigation message data bit. Coherent integration is performed to reduce the effects of thermal noise. Longer 

coherent integration times may also be limited by satellite Doppler, receiver oscillator error and drift, and receiver motion.  



 
Figure 1.  In-phase and Quadrature component of an incoming GNSS signal. 

 

𝐼(√𝐶, 𝜏, 𝑓𝐷 , 𝜃; 𝜏̅, 𝑓𝐷̅ , 𝜃̅) =  
√𝐶

𝑇𝐶𝑂
 ∫ 𝑥(𝑡 − 𝜏)𝑥(𝑡 − 𝜏̅) cos(2𝜋(𝑓𝐷 − 𝑓𝐷̅)𝑡 + 𝜃 − 𝜃̅)𝑑𝑡

𝑇𝐶𝑂

0

 (1) 

 

𝑄(√𝐶, 𝜏, 𝑓𝐷 , 𝜃; 𝜏̅,  𝑓𝐷̅ , 𝜃̅) =  
√𝐶

𝑇𝐶𝑂
 ∫ 𝑥(𝑡 − 𝜏)𝑥(𝑡 − 𝜏̅) sin(2𝜋(𝑓𝐷 − 𝑓𝐷̅)𝑡 + 𝜃 − 𝜃̅)𝑑𝑡

𝑇𝐶𝑂

0

 (2) 

  

𝑆 = 𝐼 + 𝑖𝑄 (3) 

 

Performing the integrals in Equations (1) and (2), Equation (3) can be expressed as (4) (details shown in [2]). 

 

𝑆(√𝐶, 𝜏, 𝑓𝐷 , 𝜃; 𝜏̅,  𝑓𝐷̅ , 𝜃̅) = √𝐶 𝑅(𝜏 − 𝜏̅) sinc(𝜋(𝑓𝐷 − 𝑓𝐷̅)𝑇𝐶𝑂) exp(𝑖𝜋((𝑓𝐷 − 𝑓𝐷̅)𝑇𝐶𝑂 + 𝜃 − 𝜃̅))  (4) 

where 

𝑅(ξ) =  

{
 
 

 
 
ξ

𝑇𝑐
+ 1          − 𝑇𝑐 < ξ < 0

−ξ

𝑇𝑐
+ 1                0 < ξ < 𝑇𝑐

     0                   otherwise

 (5) 

and 𝑇𝑐 is the duration of a single chip.     

To simplify the notation, we define 𝑎 ≜ √𝐶.  Summing 𝑁 component signals (for example, assuming a true satellite signal, a 

spoofed signal, and a single multipath signal, 𝑁 = 3), the received signal can be expressed as +   

 

       𝑆𝑁(𝑔|𝜏̅, 𝑓𝐷̅, 𝜃̅) =  ∑ 𝑎𝑗 𝑅(𝜏𝑗 − 𝜏̅) sinc (𝜋(𝑓𝐷𝑗 − 𝑓𝐷̅)𝑇𝐶𝑂) exp(𝑖𝜋((𝑓𝐷𝑗 − 𝑓𝐷̅)𝑇𝐶𝑂 + 𝜃𝑗 − 𝜃̅))
𝑁
𝑗=1          (6) 

where 𝑔 = (𝑎1, 𝜏1, 𝑓𝐷1 , 𝜃1, … , 𝑎𝑁 , 𝜏𝑁 , 𝑓𝐷𝑁 , 𝜃𝑁).   

 
+ Strictly speaking, Equation (6) is true only for infinite length random codes.  For finite length PRN codes like GPS L1 C/A, 

𝑅(𝜉) will have additional small, but non-zero, values outside the domain 𝜉 ∈ (−𝑇𝑐, 𝑇𝑐).  We ignore these for now but will 

address their impact later. 



The Complex Cross Ambiguity Function (CCAF) measurements discretely span the code delay (𝜏̅) and Doppler frequency 

(𝑓𝐷̅) space. At present, to limit the size of the measurement data, we set 𝜃̅ = 0.  The upper limit on the code delay dimension 

is the length of the code itself and Doppler frequency dimension usually well within ±4000 Hz. In the absence of spoofing and 

errors the CCAF measurement landscape for the GPS L1 signal looks like Figure 2 (left). However, in reality there will be 

errors, in Figure 2 (right), CCAF measurement space is shown with carrier to noise density ratio (C/N0) of 45 dB-Hz and code 

cross-correlation with 12 satellites. The cyclic color bar represents the phase 𝜃 of the incoming signal from −𝜋 to 𝜋, and the 

color shows how the phase changes in the CCAF measurement space with and without errors shown in Figure 2 (right) and 

Figure 2 (left), respectively. 

 

 
Figure 2.  Magnitudes of CCAF measurements with cyclic color bar of CCAFs when only the authentic signal is present with (right) and 

without (left) errors.  

When visualized from the code delay point-of-view, the magnitude is a triangle with base length of 2 chips and from the 

Doppler frequency point-of-view, the magnitude of CCAF is represented by a sinc function and the phase of CCAF changes 

from −𝜋 to 𝜋 with frequency 1/𝑇𝐶𝑂. A software defined radio [9] allows flexibility to arbitrarily change Doppler spacing.  

However, the code delay spacing is limited by the sampling rate of the receiver. 

 

SPOOFING 

 
 

Figure 3.  CCAF measurements when code delay and Doppler frequency pairs are far apart (left) and when code delay and Doppler 

frequency pairs are very close. 

 

GNSS spoofing techniques consist of broadcasting counterfeit GNSS signals with the goal of taking control of a GNSS receiver 

and introducing false positioning, timing, or both. A spoofing attack can be sophisticated by replicating and transmitting the 



signal parameters (amplitude, code phase, and Doppler) relatively close to the authentic signal parameters. However, it is very 

hard to replicate the precision of carrier phase, and we want to exploit this by observing the CCAF. When a spoofer initiates a 

subtle spoofing attack, it generates a signal with the same code phase and Doppler frequency pair as the authentic signal, and 

then slowly pulls away the code phase/Doppler frequency. A chip is 300 m in length (for the GPS L1 signal), and a change in 

a fraction of a chip can lead to a significant change in the PNT solution. Newer L5 signals have a faster chipping rate, and one 

chip length is 30 meters. We are focusing on the scenarios where the spoofing signals are in the vicinity of ±1 chip.  

 

When a spoofed signal is present and the code delays and Doppler frequencies of the signals are not closely aligned, two peaks 

are visible in the magnitude of the CCAF, as shown in Figure 3 (left). The two peaks merge if the code delays and Doppler 

frequencies are closely aligned, as shown in Figure 3 (right).  However, the phase is still significantly different from the 

unspoofed case. 

 

PARTICLE SWARM DECOMPOSITION 

 

Stacking the CCAF measurements from the grid space (𝜏̅, 𝑓̅𝐷), the measurement model can be written as 

 

𝑧 = 𝑆𝑁(𝑔|𝜏̅,𝑓𝐷̅) + 𝜈 (7) 

 

where 𝜈 is the vector of measurement errors, including the effects of thermal noise and code cross-correlation. To decompose 

the 𝑁 signals, we seek to obtain an estimate of the parameter vector, 𝑔̂, that minimizes the cost function 

 

𝐽 = ‖𝑧 − 𝑆𝑁(𝑔̂|𝜏̅, 𝑓𝐷̅)‖
2
. (8) 

 

Unfortunately, due to the structure of 𝑆𝑁  the cost function is non-convex, and a global minimum cannot be obtained by standard 

gradient-based methods. In computational science, Particle Swarm Optimization (PSO) [10] is an optimization algorithm that 

works by generating a population of “particles” randomly which are candidate solutions given upper and lower bounds. A 

simple PSO algorithm is shown in Figure 4.  The particles are moved around in the N dimensional space based on their own 

best-known position 𝑝𝑖 and entire population’s best-known position 𝑏 as shown in Equations (9) and (10). When a particle 

finds a position solution that minimizes the cost function better than the previous known position, 𝑝𝑖 gets updated based on 

Equation (11). If that particle’s position is the best among all other particles’ positions (minimizes the cost function), 𝑏 is 

updated based on Equation (12) and called the best global solution of the swarm. 

 

 

PSO Algorithm 

Generate 𝑛 particles randomly with “position”:  𝑥𝑖(𝑡) ∈ 𝑿 and “velocity” :  𝑣𝑖(𝑡) ∈ 𝑽 

For each 𝑖 = 1,2, …… , 𝑛 particle: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (9) 

𝑣𝑖(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖(𝑡) − 𝑥𝑖(𝑡))+ 𝑐2 ∗ 𝑟2 ∗ (𝑏(𝑡) − 𝑥𝑖(𝑡)) (10) 

𝑝𝑖(𝑡 + 1) =  {
𝑝𝑖(𝑡)              𝑓(𝑝𝑖(𝑡)) ≤  𝑓(𝑥𝑖(𝑡 + 1)) 

𝑥𝑖(𝑡 + 1)      𝑓(𝑝𝑖(𝑡)) >  𝑓(𝑥𝑖(𝑡 + 1))
 (11) 

𝑏(𝑡 + 1) = max{𝑓(𝑝𝑖(𝑡)), 𝑓(𝑏(𝑡))} (12) 

where:  

𝑟1, 𝑟2   are the uniformly distributed random numbers with 𝒩(𝜇, 𝜎2) 
𝑤   is the inertia coefficient 

𝑐1, 𝑐2   are the acceleration coefficient 

𝑝𝑖(𝑡)   is the best local position 

𝑏(𝑡)   is the best global position 



 

Figure 4.  Search mechanism of the particle swarm optimization algorithm with particle position updates based on hyperparameters.  

The PSO algorithm is applied to minimize the cost function 𝐽 in Equation (8). As the measurement vector 𝑧 may be comprised 

of N signals, the parameter vector 𝑔̂ = (𝑎̂1, 𝜏̂1, 𝑓̂𝐷1 , 𝜃̂1, … , 𝑎̂𝑁 , 𝜏̂𝑁 , 𝑓̂𝐷𝑁 , 𝜃̂𝑁) that yields the best global solution that defines our 

CCAF decomposition.   

 

FAA Las Vegas approach scenario 

Simulated RF data was generated for an aircraft on a GPS area navigation (RNAV) approach to Runway 1 Right (RWY 1R) 

at McCarron International airport in Las Vegas through a Skydel GNSS simulator. The approach for RNAV(GPS) RWY 1 is 

shown in Figure 5. Two separate data files (truth and spoofed) were created and then combined for the CCAF decomposition 

process. The truth (green) and spoofed (red) trajectories are shown in the figure and defined as follows. 

1. Truth – this file contains emulated RF data for an aircraft proceeding perfectly along the defined RNAV approach to 

RWY 1R. The defined path proceeds in a straight line from the final approach fix (FAF), KIBSE, at 35.939N, 

115.2447W, 5100 ft to the runway landing threshold point (LTP) at 36.075463N, 115.166788W, 2230 ft. The aircraft 

is flying with a constant velocity of 140 knots (72.0 m/s).  

2. Spoofed – this file contains emulated received RF data from a spoofer. The spoofed RF signal is consistent with the 

true aircraft path until about 1.5 minutes after the FAF (KIBSE). At this point the aircraft descends below 4000’ and 

the spoofed signal path begins to deviate from the true path. The position deviation ramps up linearly in magnitude 

with time over 100 seconds from zero to 100 m in the up-east direction (with equal 70.7 m components in each of the 

up and east directions), and then the error stays constant at this level for the remainder of the approach. The spoofed 

RF data includes GPS signals that are at the same power levels as in the “truth” file.  

The Skydel data file characteristics are as follows:  

• 50 MHz sample rate, 16-bit I/Q samples  

• C/A-code signals only, no noise included (but could be added later if desired)  

• GPS almanac downloaded from www.navcen.uscg.gov for Day 152 (June 1) of 2019  

• Scenario begins at 03:01:00 June 1 

• Total duration is 233 seconds  

• Emulated GPS signals include tropospheric, ionospheric, and relativistic errors. 



 

Figure 5.  Final approach of two trajectories, truth (green) and spoofed (red), on the Runway 1R at McCarron International Airport in Las 

Vegas. 

 

  

Figure 6.  Deviations between two trajectories truth (green) and spoofed (red) is shown in the Up direction (left) and East direction (right). 

CCAF DECOMPOSITION RESULTS 

 

In [1] and [2], we have shown the capabilities of particle swarm decomposition to decompose the CCAF made up of 𝑁 

contributing signals and output signal parameter vector 𝑔̂. Here are two cases showing decomposition results along with the 

CCAF measurement space with and without spoofing in the FAA Las Vegas approach scenario. In case 1, CCAF measurement 

space is spoofed which also includes thermal noise and code cross-correlation. To reduce the effect of noise, the signal is 

integrated coherently for 20 milliseconds. The Case 1 table (left) shows the two output signals with amplitude of 1 and 0.87. 

The difference between the code phases of two signals is 0.25 chips. The Case 1 Figure (right) shows the CCAF measurement 

space, along with phase on a cyclic color bar. In case 2, there is no spoofing present and as expected the output second signal 

amplitude is close to zero as shown is Case 2 table (left). The CCAF measurement space corresponding to the output signal 



parameters is shown in Case 2 Figure (right). If CCAF decomposition of all PRN available outputs more than 1 signal, then it 

is concluded that spoofing signals are present. If the other signals are close to zero, there is no spoofing.  

 

 

 

 

CASE 1 Output Parameters 

  𝒈̂ 

𝒂𝟏 1.00 

𝝉𝟏  (𝐜𝐡𝐢𝐩𝐬) 911.13 

𝒇𝑫𝟏(𝐇𝐳) -728.60 

𝜽𝟏  (𝐫𝐚𝐝) -1.32 

    
𝒂𝟐 0.87 

𝝉𝟐  (𝐜𝐡𝐢𝐩𝐬) 911.38 

𝒇𝑫𝟐(𝐇𝐳) -728.31 

𝜽𝟐  (𝐫𝐚𝐝) 3.14 

    
 

 

 
  

Case 1.  A table showing the output parameters (left), CCAF measurement space (right) with 20 ms coherent integration time. 

 

 

 

CASE 2 Output Parameters 

  𝒈̂ 

𝒂𝟏 1.015 

𝝉𝟏  (𝐜𝐡𝐢𝐩𝐬) 484.91 

𝒇𝑫𝟏(𝐇𝐳) -2043.30 

𝜽𝟏  (𝐫𝐚𝐝) 0.50 

    
𝒂𝟐 0.09 

𝝉𝟐  (𝐜𝐡𝐢𝐩𝐬) 485.85 

𝒇𝑫𝟐(𝐇𝐳) -1093.00 

𝜽𝟐  (𝐫𝐚𝐝) 0.0 

    
 

 

 
  

Case 1.  A table showing the output parameters (left), CCAF measurement space (right) with 20 ms coherent integration time. 

Inverse receiver autonomous integrity monitoring 

 

Receiver autonomous integrity monitoring (RAIM) is used in GNSS receivers to assess the integrity of the signals received at 

any instant in time. RAIM detects faults with redundant GPS pseudorange measurements. That is, when more satellites are 

available than needed to produce a position fix, the extra redundancy provides a measure of the measurement consistency. For 

example, in residual-based RAIM, the test statistic is defined as the 2-norm of the residual vector r (i.e., the 2-norm difference 

between the estimated and observed measurements): 

  

𝑟 ≜ 𝑧∗ − 𝐻Δ𝑥̂ (13) 



 

For spoofing detection, 6 satellite signals are decomposed into 3 signals each, resulting in n combinations of 6 satellites per 

set. In Figure 7, different satellites are represented with different colors. With CCAF decomposition, each of the satellites 

produces three outputs signals (authentic, spoofed, multipath; represented as 1, 2, and 3, respectively). Different combination 

sets are generated with these output signals. Each set provides a position fix. If the sets contain all authentic and all spoofed 

signals, the residual 𝑟 will be small illustrating a consistency among the signals in the set, while other combination sets will 

not. Since we are interested in identifying consistent sets, instead of inconsistent, we dub this process “Inverse RAIM”.   

 

 
Figure 7.  Inverse receiver autonomous integrity monitoring concept with three decomposed signals from each satellite numbered as:           

(1) authentic signal, (2) spoofed signal, (3) multipath. 

 
Figure 8.  Estimated positions from different sets of satellite combination (authentic and spoofed) shown with red markers in comparison 

with true position (3017’15.068” N, 9744’08.642” W) with blue marker. 

 

In Figure 8, we plot all the position fixes (blue markers) from all 64 combination sets near the end of the trajectory at 230 

seconds. Figure 9 (right) shows a zoomed-in view of these position fixes, and Figure 9 (left) shows their corresponding 



residuals. Note that the residuals of two combination sets, numbered 6 and 59, are smaller in comparison to the rest. These two 

combinations result in positions that are plotted with black markers in Figure 9 (right). In these results, satellite combination 

set 6 is the conjugate of satellite combination Set 59, which means that if one combination contains all the code phases from 

the first peak, the other combination contains code phases from the second peak. These two consistent sets (minimum residuals) 

are closed to the true position (green) and spoofed position (red) as shown in Figure. The dynamics of the aircraft can be used 

to determine the true solution. Information about the aircraft dynamics can also be realistically achieved using other aiding 

sensors (for example, inertial sensors).  With such aiding, spoofing attacks can not only be detected, but also mitigated by 

forcing the receiver to track the authentic signals and output the position estimate corresponding to the authentic combination 

set out of the decomposed signals. 

 

  
 

Figure 9.  Position fixes for 64 satellite combination sets (right) with red marker as true position, and residuals corresponding to those 

combination sets (left). 

INERTIAL NAVIGATION SYSTEM (INS) 

 

An IMU consists of tri-axis accelerometers and gyroscopes to provide measurements of acceleration and body angular rate. 

The acceleration measurements are integrated once to obtain velocity and then integrated again to get position, whereas attitude 

is obtained by integrating angular rate measurements. These measurements have errors (bias and noise); therefore, the position 

solutions drift over time.  

 

IMU Errors 

 

Accelerometer (specific force) 𝑓𝑏  and gyroscope (angular rate) 𝜔̃𝑖𝑏
𝑏  measurements are the sums of true quantities 𝑓𝑏 , 𝜔𝑖𝑏

𝑏  and 

additive IMU sensor errors. These errors can be modeled through stochastic processes  

 

𝑓𝑏 = 𝑓𝑏 + 𝑏𝑎(𝑡) + 𝜐𝑎 (14) 

𝜔̃𝑖𝑏
𝑏  = 𝜔𝑖𝑏

𝑏 + 𝑏𝑔(𝑡) + 𝜐𝑔 (15) 

 

where 𝜐𝑎 is the additive white Gaussian noise known as velocity random walk for accelerometers, and 𝜐𝑔  is the additive white 

gaussian noise of called angular random walk of gyroscope. The specifications for both are provided by IMU manufacturers. 

 

Measurement biases affecting accelerometers 𝑏𝑎(𝑡) and gyroscopes 𝑏𝑔(𝑡) are made of two components, bias repeatability 𝑏𝑟 

which is a constant bias and bias instability 𝑏𝑠(𝑡), which can vary slowly over time: 

 



𝑏(𝑡) = 𝑏𝑟 + 𝑏𝑠(𝑡) (16) 

 

Bias instability is a flicker noise process which cannot be modeled in the state space domain. Instead, it is typically modeled 

as first-order Gauss Markov Random Process (FOGMRP). 

 

𝑏̇𝑠(𝑡) = −
1

𝜏
𝑏𝑠(𝑡) + 𝜂 (17) 

where:  

 

𝜏 is the time constant 

𝜂 is the driving white Gaussian noise for bias instability 

 

These errors depend upon the grade of the INS. Table 1 shows error specifications for typical navigation (Honeywell HG9900) 

grade and tactical (Safran STIM 300) grade IMUs.  

  
Units INS Quality 

  
Navigation Grade Tactical Grade 

Velocity Random Walk m/s/√hr 0.0143 0.06 
   

 

Accelerometer Instability mg 0.01 0.05    
 

Angular Random Walk deg/√hr 0.001 0.15 
   

 

Gyro Instability deg/hr 0.0035 0.5    
 

Table 1.  INS grades (Navigation and Tactical) in terms of their errors 

INS Mechanization 

 

The nonlinear kinematic equations (18) of the aircraft are used to compute the actual position from the accelerometer and 

gyroscope sensor outputs. The expressions account for four different frames. The inertial frame (𝑖) is centered at the Earth’s 

but is not rotating with the Earth. The x direction aligns with the vernal equinox, the z direction aligns with the Earth’s rotation 

axis, and the y direction is orthogonal to the x-z plane.  The ECEF frame (𝑒) is also centered at the Earth’s center but rotates 

with a constant angular speed 𝜔𝑖𝑒 about the z-axis. The Navigation frame (𝑛) is centered at a local reference location and its 

axes are defined in the East-North-Up (ENU) directions, following Earth’s rotation. If the navigation frame is not fixed, 𝜔𝑒𝑛 

is used in the equation to account for the rotation from the ECEF frame to the Navigation frame.   The last frame of relevance 

is the body frame (𝑏), fixed to the aircraft and its center represents the position of interest. This frame has the axes are aligned 

with the sensor’s axes. The superscript on the expression denotes the relevant frame of reference for each component. 

 

The state vector 𝑋 represents aircraft’s position 𝑟, velocity 𝑣, and attitude 𝐸 expressed in navigation frame (ENU) 

 

𝑋 = [

𝑟̇𝑒
𝑛

𝑣̇𝑒
𝑛

𝐸̇𝑛𝑏
𝑛
] = [

𝑣𝑒
𝑛

𝐶𝑏
𝑛𝑓𝑏 − [2𝜔𝑖𝑒

𝑛 + 𝜔𝑒𝑛
𝑛 ] ×  𝑣𝑒

𝑛 + 𝑔𝑙
𝑛

𝐶𝑏
𝑛[𝜔𝑖𝑏

𝑏 − 𝐶𝑛
𝑏[𝜔𝑖𝑒

𝑛 + 𝜔𝑒𝑛
𝑛 ]]

] (18) 

 

where 

 

𝑓𝑏  are the accelerometer measurements with respect to the inertial frame expressed in body frame coordinates 

𝜔𝑖𝑏
𝑏  are the gyroscope measurements respect to the inertial frame expressed in body frame coordinates 

𝑔𝑙
𝑛 is the local gravity vector in the navigation expressed in navigation frame coordinates 

 

The attitude can be expressed in the form of Euler angles:  roll (𝜙), pitch (𝜃) and yaw (𝜓) 

 



𝐸 = [

𝜙
𝜃
𝜓
] (19) 

 

𝐶𝑏
𝑛 is the rotation matrix that transforms the measured specific force vector into navigation frame coordinates: 

 

𝐶𝑏
𝑛 = [

cos𝜓 −sin 𝜓 0
sin𝜓 cos𝜓 0
0 0 1

] [
cos 𝜃 0 sin 𝜃
0 1 0

−sin 𝜃 0 cos 𝜃
] [

1 0 0
0 cos𝜙 −sin𝜙
0 sin𝜙 cos 𝜙

] (20) 

 

INS integrated CCAF Decomposition  

The integration of INS with the CCAF decomposition approach is illustrated in Figure 10. Prior to the occurrence of spoofing, 

the CCAF decomposition is initiated. This decomposition produces only one prominent signal (i.e., the authentic signal for 

each PRN). A position solution is then estimated to initialize the INS, which is depicted by the green markers following the 

position solution. While the free inertial system is in progress, the system periodically reverts to CCAF decomposition. The 

frequency of these decomposition cycles can be customized to meet the specific requirements of the application. This 

adaptability ensures that the system remains responsive to changing environmental conditions and operational needs. When 

spoofing begins, two Inverse RAIM solutions correspond to two position solutions, as indicated by the green and red markers. 

To determine the true navigation solution amidst spoofing, the system leverages the trajectory data obtained from the INS. An 

exclusion function, based on the accumulated trajectory information, identifies the most reliable and accurate position estimate. 

Once the true navigation solution is established, the INS is reinitialized from this precise reference point. This reinitialization 

ensures that the system can quickly recover from spoofing events and continue to provide accurate navigation information, 

maintaining operational continuity. This comprehensive methodology seamlessly combines INS and CCAF decomposition to 

form a robust defense against spoofing attacks while preserving accurate and resilient navigation capabilities. 

Utilizing the output of Inverse RAIM as shown in Figure 8, we present a comparison between the trajectories of a navigation-

grade INS (Fig. 11, left) and a tactical-grade INS (Fig. 11, right) in the scenario. These two different grades of INS are initialized 

at the beginning of the scenario. The trajectory of the navigation-grade INS closely aligns with one of the Inverse RAIM 

solutions, clearly indicating that this Inverse RAIM solution accurately represents the true navigation solution. In contrast, the 

tactical-grade INS exhibits larger errors in its trajectory. As a result, the trajectory generated by the tactical-grade INS lacks 

the reliability to determine the true navigation solution from the same IMU initialization position (CCAF decomposition point). 

 
Figure 10.  Inertial integrated CCAF decomposition 

 

It is evident that CCAF decomposition needs to operate more frequently to mitigate the drift of the tactical-grade INS. Before 

any signal spoofing occurs, the position estimate derived from the CCAF decomposed signals serves as the initialization point 

for the INS. This step ensures that the INS begins its navigation trajectory with a precise starting point. After 100 seconds of 

operation, CCAF is decomposed for all available PRNs, and spoofing is detected. Inverse RAIM yields two consistent solutions, 



as depicted in Figure 13 (right) with black and blue markers, while all other position estimates from satellite combinations are 

also shown. The residuals corresponding to the Inverse RAIM solutions are displayed in Figure 13 (left). The trajectory of the 

INS closely tracks the true navigation solution, indicating that the INS is providing accurate navigation information. The INS 

is then reinitialized with the navigation solution, and the true navigation solution is eventually reached at the end of the 

trajectory, as shown in Figure 14. This demonstrates that the INS, with appropriate adjustments and reinitialization, effectively 

recovers from the spoofing event and provides accurate position estimates. The frequency of CCAF decomposition varies 

according to the specific requirements of the application. In other words, how often the signals are decomposed depends on the 

needs of the navigation system and the threat of spoofing. 

 

  
 

Figure 11.  A comparison between a navigation grade and a tactical grade INS trajectory following the Inverse RAIM at 230 second 

 

 
 

Figure 12.  Estimated position from the CCAF decomposed signal parameters just before the spoofing starts  



  
 

Figure 13.  Position fixes for 64 satellite combination sets (right) with red marker as true position, and residuals corresponding to those 

combination sets (left). 

 

Figure 14.  A figure showing a tactical grade INS trajectory following closely to one of the Inverse RAIM solutions. 

 

CONCLUSION 

 

In this paper, we have presented a method for integrating CCAF decomposition with inverse RAIM and INS to detect and 

exclude spoofing attacks, as depicted in Figure 15. This method involves decomposing the CCAF into three signals (authentic, 

spoofed, and multipath) and estimating the output component parameter vector represented by ĝ. The decomposed output 

parameters are utilized for position estimation by creating various combination sets. Among these sets, only two are consistent 

in a RAIM sense: one where all authentic signals from each PRN are combined and another where all spoofed signals from 

each PRN are combined. We also demonstrated how this method enables continuous tracking of the authentic signal when 

integrated with an INS. Our results indicated that the exclusion performance is dependent on the INS grade. Future efforts will 

focus on propagating INS covariances to provide a stochastic measure of mis-exclusion probability. Additionally, we plan to 

use longer coherent integration times, incorporate navigation bit information, consider user motion, and account for clock 

dynamics to obtain more accurate estimates of code phases and reduce decomposition cost function errors. 



 
Figure 15.  Flow chart of GNSS spoofing detection and exclusion by DCCAF with INS Aiding 
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