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Abstract  
 

In this paper, we present decomposition results of the Complex Cross Ambiguity Function (CCAF) of spoofed Global 

Navigation Satellite System (GNSS) signals into their constitutive components [1]. We also propose a new, post-decomposition 

detection algorithm based on a new “inverse” Receiver Autonomous Integrity Monitoring (RAIM) concept. The goal is to 

differentiate the spoofed and the authentic satellite signals to generate an authentic navigation solution. First, each satellite 

provides the two sets of signal parameters (code phases) post-decomposition. Using combinations of these sets, we calculate 

the pseudorange residuals and identify the two consistent (the authentic and spoofed) navigation solutions among all possible 

signal combinations over different times. The method is applicable to spoofing scenarios that can lead to Hazardous Misleading 

Information (HMI) and are difficult to detect by other means. The method can identify spoofing in the presence of multipath 

and when the spoofing signal power matches with offsets in code delay and Doppler frequency relatively close to the true 

signal. Spoofing can be identified at an early stage within the receiver without additional augmented sensors.  

 

INTRODUCTION 

 

Global Navigation Satellite Systems (GNSS) are the foundation of modern technological infrastructure. GNSS is used for 

Positioning, Navigation, and Timing (PNT) worldwide with applications in aviation, automated vehicle systems, 

telecommunication, finance, and energy systems. GNSS signals are vulnerable to Radio Frequency Interference (RFI) such as 

jamming and spoofing attacks. Jamming can deny access to GNSS service while spoofing can create false positioning and 

timing estimates that can lead to catastrophic results. This paper focuses on the detection of intentional RFI known as spoofing, 

a targeted attack where a malicious actor takes control of the victim’s position and/or time solution by broadcasting counterfeit 

GNSS signals [2]. Different methods have been proposed to detect spoofing, such as received power monitoring which monitors 



the response of automatic gain control (AGC) and can be used when an overpowered spoofing signal is broadcast, signal quality 

monitoring (SQM) which tracks the distortion of the autocorrelation function using I and Q channels, RAIM checks on 

inconsistent sets of five or more pseudoranges that allow the receiver to detect spoofing with one or more false signals, signal 

direction of arrival (DoA) estimation techniques using directional antennas or moving antennas in a specified pattern to observe 

if all satellite signals are broadcast from the same direction, inertial navigation system (INS) aiding [3] [4] which is based on 

drift monitoring, and others [5] [6]. Each of these methods have their own advantages and drawbacks.  CAF (Cross Ambiguity 

Function) monitoring approaches [7], which exploit only the magnitude of the Complex CAF (CCAF), can be used to detect 

spoofing but face difficulties in environments with multipath and when the Doppler frequency and code phase of the received 

signal are closely aligned with the spoofed signal. There are machine learning and deep learning approaches (for example 

convolutional neural networks) to detect GNSS spoofing attacks using CAF, but these methods depend upon the availability of 

spoofing data and are limited to the dataset upon which they are trained [8]. A sampled signal can be represented in the form 

of a complex number, 𝐼 (in-phase) and 𝑄 (quadrature), as a function of code delay and Doppler offset.  In previous CAF 

monitoring concepts, a receiver performs a two-dimensional sweep to calculate the CAF by correlating the received signal with 

a locally generated carrier modulated by pseudorandom code for different possible code delay and Doppler pairs. Spoofing is 

detectable when two peaks in the CAF are distinguishable in the search space. This could happen, for example, if a power 

matched spoofed signal does not accurately align the Doppler and code phase with the true received signal. In practice, because 

detection using the CAF is not reliable under multipath or if the spoofed signals are close to the true ones, we instead exploit 

the full CCAF.  

 

We implemented a method to decompose a CCAF made up of 𝑁 contributing signals by minimizing a least-squares cost 

function. Because the optimization problem is non-convex, we implemented a Particle Swarm Optimization (PSO) algorithm 

to find the global minimum. The algorithm can decompose a sum of GNSS signals for a given satellite (e.g., true, spoofed, and 

multipath) into its respective defining parameters—signal amplitudes, Doppler frequencies, code delays, and carrier phases. 

The same process is performed for each visible satellite, and the estimated code phases are then used in the next step, which is 

the detection function.  

 

The spoofing detection concept is as follows: consider a signal associated with a given satellite with three extracted code phases, 

associated with the true, spoofed, and multipath component. At first it is unknown which code phase corresponds to either 

authentic signal or spoofed signal.  Now consider a set of redundant satellites (e.g., five or more for single constellation GNSS, 

six or more for dual constellations, etc.).  The true code phases will be consistent, in a RAIM sense, across all the satellites.  

The same would be true for the spoofed code phases.  But the multipath code phases would not be self-consistent.  Therefore, 

we may assert that spoofing is happening if more than one set of code phases passes a RAIM test.  The process is termed 

“Inverse RAIM” because detection is based on an extra set “passing” the RAIM test.  The new algorithm is validated in 

simulation and against publicly available spoofing datasets, including TEXBAT [9]. 

 

GNSS Signals 

 

GPS paved the way for global satellite navigation, followed by GLONASS, Galileo, BeiDou, and regional systems such as 

IRNSS and QZSS. These satellite constellations have different frequencies and signal structures for both civil and military use. 

Current and planned signals transmit on L1 (1575.42 MHz), L2 (1227.60 MHz), and modernized L5 (1176.45 MHz). 

Techniques such as code division multiple access (CDMA) and frequency division multiple access (FDMA) are used to 

distinguish different satellites in the constellation. Many modern signals also transmit a pilot component along with the data 

component of the signal which are not modulated with any navigation data and can be used to enhance the receiver signal 

processing capability. Data is modulated on the signals either through binary phase shift keying (BPSK) or binary offset carrier 

(BOC). Usually, all GNSS signals have a chip (rectangular) waveform. In BPSK, the 0s and 1s in a binary message are 

represented by two different phase states in the rectangular waveform. BOC modulation divides each chip into subchips 

represented as BOC (𝑓𝑠, 𝑓𝑐) where 𝑓𝑠 is the subcarrier frequency and 𝑓𝑐 is the carrier frequency. BOC also divides the power 

spectrum main lobe into two identical lobes around the carrier frequency. We are using the GPS L1 C/A signal as an example 

in this work, but this spoofing detection method is applicable to all GNSS constellations and frequencies. The GPS L1 C/A 

signal is transmitted at a frequency of 𝑓𝐿 = 1575.42 MHz (approximately 19 cm wavelength) from all satellites in the form of 

radio waves that are modulated with a pseudo-random (PRN) code 𝑥(𝑡) at the rate of 1.023 Mega-chips per second (300 m 

chip length) to distinguish between different satellites, and then again modulated with Navigation Data 𝐷(𝑡) at the rate of 50 

bits per second. 

 

GPS Receiver Architecture 



 

As shown in Figure 1, the GPS signal is received at a receiver’s antenna with code delay 𝜏, Doppler 𝑓𝐷 , and carrier phase 𝜃. 

The signal is then amplified, passed through a band pass filter, and then down converted to an intermediate frequency 𝑓𝐼𝐹 by 

mixing with a locally generated mixing signal. It is then passed through a low pass filter to remove the high frequency 

components. The advantage of converting the signal to an intermediate frequency is that it simplifies the subsequent stages, 

making filters easier to design and tune. The signal is then digitized and mixed again (in Figure 2) with two locally generated 

replicas of the carrier signal 𝑓�̅�, in-phase and quadrature, differing in phase by a quarter cycle, �̅� and �̅� + 𝜋 
2
. During digitization, 

the signal is sampled at a sampling frequency based on the Nyquist rate to reliably capture the signal form. It is then passed 

through a low pass filter to remove the intermediate frequency, and finally it is mixed with a local replica of the PRN code with 

delay �̅�.    

 
Figure 1.  The front end of a GPS receiver. 

 
 

Figure 2.  GPS receiver architecture after signal is digitized. 

In-phase and Quadrature components 

 

The in-phase 𝐼 and quadrature 𝑄 components of an uncorrupted output signal (i.e., no spoofing or multipath) with amplitude 

√𝐶 are shown in Equations (1) and (2). When presented in complex form, as in Equation (3), the in-phase and quadrature 

components are the real and imaginary parts of the signal, respectively.  The coherent integration time 𝑇𝐶𝑂 can range from 1 to 

20 milliseconds, with the upper limit designed to avoid integration across boundaries of a GPS data bit 𝐷(𝑡) shown in Figure 

3. Coherent integration is performed to reduce the effects of thermal noise. Longer coherent integration times may also be 

limited by satellite Doppler, receiver oscillator error and drift, and receiver motion.  



 

𝐼(√𝐶, 𝜏, 𝑓𝐷 , 𝜃; �̅�, 𝑓�̅� , �̅�) =  
√𝐶

𝑇𝐶𝑂
 ∫ 𝑥(𝑡 − 𝜏)𝑥(𝑡 − �̅�) cos(2𝜋(𝑓𝐷 − 𝑓�̅�)𝑡 + 𝜃 − �̅�) 𝑑𝑡

𝑇𝐶𝑂

0

 (1) 

 

𝑄(√𝐶, 𝜏, 𝑓𝐷 , 𝜃; �̅�,  𝑓�̅� , �̅�) =  
√𝐶

𝑇𝐶𝑂
 ∫ 𝑥(𝑡 − 𝜏)𝑥(𝑡 − �̅�) sin(2𝜋(𝑓𝐷 − 𝑓�̅�)𝑡 + 𝜃 − �̅�)𝑑𝑡

𝑇𝐶𝑂

0

 (2) 

  

𝑆 = 𝐼 + 𝑖𝑄 (3) 

 

Performing the integrals in Equations (1) and (2), Equation (3) can be expressed as (4) (details shown in the appendix) 

 

𝑆(√𝐶, 𝜏, 𝑓𝐷 , 𝜃; �̅�,  𝑓�̅� , �̅�) = √𝐶 𝑅(𝜏 − �̅�) sinc(𝜋(𝑓𝐷 − 𝑓�̅�)𝑇𝐶𝑂) exp(𝑖𝜋((𝑓𝐷 − 𝑓�̅�)𝑇𝐶𝑂 + 𝜃 − �̅�))  (4) 

where 

𝑅(ξ) =  

{
 
 

 
 
ξ

𝑇𝑐
+ 1          − 𝑇𝑐 < ξ < 0

−ξ

𝑇𝑐
+ 1                0 < ξ < 𝑇𝑐

     0                   otherwise

 (5) 

and 𝑇𝑐 is the duration of a single chip.     

To simplify the notation, we define 𝑎 ≜ √𝐶.  Summing 𝑁 component signals (for example, assuming a true satellite signal, a 

spoofed signal, and a single multipath signal, 𝑁 = 3), we have+   

                

       𝑆𝑁(𝑔|�̅�, 𝑓�̅�, �̅�) =  ∑ 𝑎𝑗 𝑅(𝜏𝑗 − �̅�) sinc (𝜋(𝑓𝐷𝑗 − 𝑓�̅�)𝑇𝐶𝑂) exp(𝑖𝜋((𝑓𝐷𝑗 − 𝑓�̅�)𝑇𝐶𝑂 + 𝜃𝑗 − �̅�))
𝑁
𝑗=1          (6) 

 

where 𝑔 = (𝑎1, 𝜏1, 𝑓𝐷1 , 𝜃1, … , 𝑎𝑁 , 𝜏𝑁 , 𝑓𝐷𝑁 , 𝜃𝑁).   

 

 
Figure 3.  Phase change at navigation data bit boundary which limits the coherent integration time. 

 

 

 
+ Strictly speaking, Equation (6) is true only for infinite length random codes.  For finite length PRN codes like GPS L1 C/A, 

𝑅(𝜉) will have additional small, but non-zero, values outside the domain 𝜉 ∈ (−𝑇𝑐, 𝑇𝑐).  We ignore these for now but will 

address their impact later. 



Complex Cross Ambiguity Function (CCAF) Measurement Space 

The Complex Cross Ambiguity Function (CCAF) measurements discretely span the code delay (�̅�) and Doppler frequency 

(𝑓�̅�) space. At present, to limit the size of the measurement data, we set �̅� = 0.  The upper limit on the code delay dimension 

is the length of the code itself and Doppler frequency dimension usually well within ±4000 Hz. In the absence of spoofing and 

multipath (and noise), the CCAF measurement landscape looks like Figure 4. 

 

 
 

Figure 4.  Magnitudes (left) and phases (right) of CCAF measurements of CCAFs when only the authentic signal is present. 

When visualized from the code delay point-of-view, the magnitude is a triangle with base length of 2 chips as shown in Figure 

5 (left) and the CCAF phase change happens at correlation peak (Figure 5 (right)). From the Doppler frequency point-of-view, 

the magnitude of CCAF is represented by a sinc function (Figure 6 (left)) and the phase of CCAF by a sawtooth pattern (Figure 

6 (right)) with frequency 1/𝑇𝐶𝑂. The software defined radio [10] allows flexibility to arbitrarily change Doppler spacing.  

However, the code delay spacing is limited by the sampling rate of the receiver. 

 

 

 
 

Figure 5.  Magnitudes (left) and phases (right) of CCAF measurements from code delay point-of-view. 

 



  

Figure 6.  Magnitudes (left) and phases (right) of CCAF measurements from Doppler point-of-view. 

SPOOFING 

 

GNSS spoofing techniques consist of broadcasting fake GNSS signals with the goal of taking control of a GNSS receiver and 

introducing false results for positioning or timing or both. A spoofing attack can be very sophisticated by replicating and 

transmitting the signal parameters (amplitude, code phase, and Doppler) relatively close to the authentic signal parameters. 

However, it is very hard to replicate the precision of carrier phase, and we want to exploit this by observing the CCAF. When 

a spoofer initiates a subtle spoofing attack, it generates a signal with the same code phase and Doppler frequency pair as the 

authentic signal, and then slowly pulls away the code phase/Doppler frequency. A chip is 300 m in length (for the GPS L1 

signal), and a change in a fraction of a chip can lead to a significant change in the PNT solution. Newer L5 signals have a faster 

chipping rate, and one chip length is 30 meters. We are focusing on scenarios where the spoofing signals are in the vicinity of 

±1 chip.  

 

When a spoofed signal is present and the code delays and Doppler frequencies of the signals are not closely aligned, two peaks 

are visible in the magnitude of the CCAF, as shown in Figure 7 (left), and the phase, in Figure 7 (right), is considerably distorted 

relative to the unspoofed case in Figure 4 (right). The two peaks merge if the code delays and Doppler frequencies are closely 

aligned, as shown in Figure 8 (left).  However, the phase in Figure 8 (right) is still significantly different from the unspoofed 

case. 

 

 

 
 

Figure 7.  Magnitudes (left) and phases (right) of CCAF measurements when code delay and Doppler frequency pairs are far apart. 



  
 
Figure 8.  Magnitudes (left) and phases (right) of CCAF measurements when code delay and Doppler frequency pairs are closely aligned. 

   

PARTICLE SWARM DECOMPOSITION 

 

Stacking the CCAF measurements from the grid space (�̅�, �̅�𝐷), the measurement model can be written as 

 

𝑧 = 𝑆𝑁(𝑔|�̅�,𝑓�̅�) + 𝜈 (7) 

 

where 𝜈 is the vector of measurement errors, including the effects of thermal noise and code cross-correlation. To decompose 

the 𝑁 signals, we seek to obtain an estimate of the parameter vector, �̂�, that minimizes the cost function 

 

𝐽 = ‖𝑧 − 𝑆𝑁(�̂�|�̅�, 𝑓�̅�)‖
2
. (8) 

 

Unfortunately, due to the structure of 𝑆𝑁  the cost function is non-convex, and a global minimum cannot be obtained by standard 

gradient-based methods. In computational science, Particle Swarm Optimization (PSO)  [11]is an optimization algorithm that 

works by generating a population of “particles” randomly which are actually candidate solutions given upper and lower bounds. 

A simple PSO algorithm is shown in Figure 9.  The particles are moved around in the N dimensional space based on their own 

best-known position 𝑝𝑖 and entire population’s best-known position 𝑏 as shown in Equations (9) and (10). When a particle 

finds a position/solution that minimizes the cost function better than the previous known position, 𝑝𝑖 gets updated based on 

Equation (11). If that particle’s position is best among all other particles’ positions (minimizes the cost function), 𝑏 is updated 

based on Equation (12) and called the best global solution of the swarm. 

 

 

PSO Algorithm 

Generate 𝑛 particles randomly with “position”  𝑥𝑖(𝑡) ∈ 𝑿 and “velocity” :  𝑣𝑖(𝑡) ∈ 𝑽 

For each 𝑖 = 1,2, …… , 𝑛 particle: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (9) 

𝑣𝑖(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖(𝑡) − 𝑥𝑖(𝑡))+ 𝑐2 ∗ 𝑟2 ∗ (𝑏(𝑡) − 𝑥𝑖(𝑡)) (10) 

𝑝𝑖(𝑡 + 1) =  {
𝑝𝑖(𝑡)              𝑓(𝑝𝑖(𝑡)) ≤  𝑓(𝑥𝑖(𝑡 + 1)) 

𝑥𝑖(𝑡 + 1)      𝑓(𝑝𝑖(𝑡)) >  𝑓(𝑥𝑖(𝑡 + 1))
 (11) 

𝑏(𝑡 + 1) = max{𝑓(𝑝𝑖(𝑡)), 𝑓(𝑏(𝑡))} (12) 



where:  

𝑟1, 𝑟2   are the uniformly distributed random numbers with 𝒩(𝜇, 𝜎2) 
𝑤   is the inertia coefficient 

𝑐1, 𝑐2   are the acceleration coefficient 

𝑝𝑖(𝑡)   is the best local position 

𝑏(𝑡)   is the best global position 

 

Figure 9.  Search mechanism of the particle swarm optimization algorithm with particle position updates based on hyperparameters.  

The PSO algorithm is applied to minimize the cost function 𝐽 in Equation (8). As the measurement vector 𝑧 may be comprised 

of N signals, the parameter vector �̂� = (�̂�1, �̂�1, �̂�𝐷1 , �̂�1, … , �̂�𝑁 , �̂�𝑁 , �̂�𝐷𝑁 , �̂�𝑁) that yields the best global solution defines our CCAF 

decomposition.   

 

RESULTS 

 

TEXBAT Dataset 

 

In [1] we showed the capability of the PSO algorithm to decompose CCAF made of up to N contributing signals and output the 

parameter vector �̂� when noise and code cross-correlation are not present. To test the algorithm in a more realistic scenario, we 

take a section of the TEXBAT dataset scenario 4, power-matched position push with power advantage of 0.4 dB, that includes 

thermal noise and cross correlations. The measurement space for PRN 13 consists of 1023 chips that are distributed over 25,000 

samples, i.e., code delay bins, with Doppler frequency bin widths of 10 Hz, and a total of 1501 bins. This can be seen in the 

figure in Case 1 (right), where two signals are present. The PSO searches for three signals, while the input CCAF has two 

prominent signals present. As shown in the Case 1 table, the algorithm correctly decomposes the signal parameters. The two 

signals detected by the algorithm are the authentic signal and the spoofing signal in the measurement space, while the third 

signal is estimated to have almost zero amplitude. The two detected signals are zoomed in and shown in Figure 10.  
 

The noise floor as shown in the Case 1 CCAF measurement space includes thermal noise, and cross correlations are evident. 

The noise floor is reduced by increasing the coherent integration time. In Case 2, the coherent integration time is 20 

milliseconds, since for GPS L1 C/A signal the Navigation Data bit is 20 milliseconds long. In Case 2, the peak is reduced in 

width as the sinc function has a frequency of 1/TCO. In both Case 1 and Case 2, output parameters are relatively close to each 

other, but we don’t have any information about the true parameters. The third signal output by the particle swarm decomposition 

algorithm has zero amplitude indicating that there is no third signal present. 

 

The zoomed-in view of both Case 1 and Case 2 along a constant Doppler cut is shown in Figure 10. The noise floor with 20 

ms coherent integration time (Figure 10 (right)) is significantly lower than the 1 ms coherent integration time (Figure 10 (left)). 

Both results are normalized with one of the peaks representing an authentic signal and the other representing a spoofing signal. 

The peaks’ magnitudes also change with respect to each other when the coherent integration time changes from 1 ms to 20 ms. 

 

  



CASE 1 Output Parameters 

 �̂� 

𝒂𝟏 0.9891 

𝝉𝟏  (𝐜𝐡𝐢𝐩𝐬) 507.7127 

𝒇𝑫𝟏(𝐇𝐳) -1669.0176 

𝜽𝟏  (𝐫𝐚𝐝) -0.3230 

   

𝒂𝟐 0.9854 

𝝉𝟐  (𝐜𝐡𝐢𝐩𝐬) 506.1454 

𝒇𝑫𝟐(𝐇𝐳) -1653.8006 

𝜽𝟐  (𝐫𝐚𝐝) -1.2370 

   

𝒂𝟑 0.0095 

𝝉𝟑  (𝐜𝐡𝐢𝐩𝐬) 505.5803 

𝒇𝑫𝟑(𝐇𝐳) -2407.6364 

𝜽𝟑 (𝐫𝐚𝐝) 0.4319 
 

 
  

Case 1.  A table showing the output parameters (left), and the amplitude of the measured CCAF in the TEXBAT dataset (right) for 1 ms 

coherent integration time. 

 

 

CASE 2 Output Parameters 

 �̂� 

𝒂𝟏 1.0452 

𝝉𝟏  (𝐜𝐡𝐢𝐩𝐬) 506.2817 

𝒇𝑫𝟏(𝐇𝐳) -1660.9876 

𝜽𝟏  (𝐫𝐚𝐝) 0.1069 

  

𝒂𝟐 1.0213 

𝝉𝟐  (𝐜𝐡𝐢𝐩𝐬) 507.8261 

𝒇𝑫𝟐(𝐇𝐳) -1663.4713 

𝜽𝟐  (𝐫𝐚𝐝) -1.5707 

  

𝒂𝟑 0.0000 

𝝉𝟑  (𝐜𝐡𝐢𝐩𝐬) 501.5564 

𝒇𝑫𝟑(𝐇𝐳) -1087.3015 

𝜽𝟑 (𝐫𝐚𝐝) 0.2369 
 

 

 
  

Case 2.  A table showing the output parameters (left), and the amplitude of the measured CCAF in the TEXBAT dataset (right) for 20 ms 

coherent integration time. 

For PRN 23, as shown in Case 3, the two signals overlap very closely in code delay and it is very difficult to infer if there is 

another signal or just noise by looking at the CCAF magnitude alone. However, using PSO, we are still able to decompose the 

signals. The third output signal represents a cross-correlation peak as its magnitude is small with respect to the other two output 

signals.  

 

We also tried to lower the computational load by reducing the length of 𝑧 by decreasing resolution of the sample grid space 

(�̅�, �̅�𝐷). After reducing the search space by 16 times, PSO algorithm was still able to decompose the signals into their 

consecutive parameters, as shown in Case 4 for PRN 13 and 1 ms coherent integration time.  The results are very close to the 

Case 1 output parameters.  The computational load for the PSO algorithm can be further reduced by finding the maximum peak 

using simple functions and cutting down the measurement space to ±2 chips in code delay and ±100 Hz in Doppler frequency.  

 



  
 

Figure 10.  Constant Doppler Cut (Zoomed-in View). Code delay shows two distinct peaks (authentic and spoofed signals) with 1 ms 

coherent integration time (left) and 20 ms coherent integration time (right) 

 

CASE 3 Output Parameters 

 �̂� 

𝒂𝟏 1.0462 

𝝉𝟏  (𝐜𝐡𝐢𝐩𝐬) 973.4456 

𝒇𝑫𝟏(𝐇𝐳) 647.9093 

𝜽𝟏  (𝐫𝐚𝐝) -0.24512 

   

𝒂𝟐 0.87985 

𝝉𝟐  (𝐜𝐡𝐢𝐩𝐬) 972.7312 

𝒇𝑫𝟐(𝐇𝐳) 648.9084 

𝜽𝟐  (𝐫𝐚𝐝) 1.5358 

   

𝒂𝟑 0.1134 

𝝉𝟑  (𝐜𝐡𝐢𝐩𝐬) 975.3697 

𝒇𝑫𝟑(𝐇𝐳) 173.0404 

𝜽𝟑 (𝐫𝐚𝐝) -0.0032682 
 

 

 
  

Case 3.  A table showing the output parameters (left), and the amplitude of the measured CCAF in the TEXBAT dataset (right) when signals 

overlap very closely 

 

PSEUDORANGE CALCULATIONS 

 

To calculate pseudoranges, signal travel time (time between when satellites transmit the signal and when receiver receives it) 

must be measured. At the speed of light, a signal from a satellite at zenith would take 67 milliseconds to reach the receiver, and 

a signal from a satellite on the horizon would take 86 milliseconds to reach the receiver. The satellite transmittal time is sent in 

the navigation message in the form of Z-count, which is an increment of 1.5 seconds and specified at the beginning of each 

subframe. Upon receiving the signal there is uncertainty in the data bit timing. Thus, bit synchronization is done. Bit 

synchronization is used to find the time in a sequence where bit transitions occur. First, a zero crossing is detected. A zero 

crossing is where the output changes from 1 to −1, or vice versa. When a zero crossing is located, the time of a bit transition is 

located. When the time of one bit transition is known, it is possible to find all bit transition times since navigation bits change 

every 20 milliseconds with 1 millisecond epoch period. 

  



CASE 4 Output Parameters 

 �̂� 

𝒂𝟏 0.9760 

𝝉𝟏  (𝐜𝐡𝐢𝐩𝐬) 507.7256 

𝒇𝑫𝟏(𝐇𝐳) -1627.5303 

𝜽𝟏  (𝐫𝐚𝐝) -0.1195 

   

𝒂𝟐 0.9464 

𝝉𝟐  (𝐜𝐡𝐢𝐩𝐬) 506.1178 

𝒇𝑫𝟐(𝐇𝐳) -1661.5159 

𝜽𝟐  (𝐫𝐚𝐝) -1.1843 

   

𝒂𝟑 0.3640 

𝝉𝟑  (𝐜𝐡𝐢𝐩𝐬) 509.5136 

𝒇𝑫𝟑(𝐇𝐳) -1061.0783 

𝜽𝟑 (𝐫𝐚𝐝) 1.3460 
 

 
  

Case 4.  A table showing the output parameters (left), and the amplitude of the measured CCAF after decreasing resolution of the sample 

grid space (�̅�, �̅�𝐷) by 16 times. 

 

Navigation data is modulated on the carrier wave at 50 Hz rate. The complete navigation message is placed over 25 frames, 

each 30 seconds long and contains 1500 bits. Each frame then contains 5 subframes. One subframe is 6 seconds long and at the 

beginning of each subframe there is an 8-bit preamble of 10001011, which could be inverted to 01110100 because of sign 

ambiguity. After finding the subframe start for all visible satellites, the times are synchronized to calculate the position using 

pseudoranges. The pseudorange is the signal time travel scaled by the speed of light in a vacuum. The navigation message 

allows us to compute satellite positions from orbital elements at the time of transmission. The pseudoranges contain unknown 

receiver and satellite clock biases. Satellite clock bias is estimated by the coefficients of a polynomial transmitted in the 

navigation message. Considering these clock biases and ionospheric and tropospheric delays, measured pseudorange 𝑃 can be 

modeled as: 

 

𝑃𝑘 = 𝜌𝑘 + 𝑐(𝑑𝑡𝑖 − 𝑑𝑡
𝑘) + 𝑇𝑘 + 𝐼𝑘 + 𝑒𝑘 (13) 

 

𝑃𝑘 =  √(𝑋𝑘 − 𝑋)2 + (𝑌𝑘 − 𝑌)2 + (𝑍𝑘 − 𝑍)2 + 𝑐(𝑑𝑡 − 𝑑𝑡𝑘) + 𝑇𝑘 + 𝐼𝑘 + 𝑒𝑘  (14) 

 

where:  

𝑘                                          subscripts represent the satellites 

𝜌                               is the true range  

(𝑋, 𝑌, 𝑍, 𝑑𝑡)                 are the position and clock bias of the receiver 

(𝑋𝑘 , 𝑌𝑘 , 𝑍𝑘, 𝑑𝑡𝑘)                 are the position and clock bias of satellite 𝑘  

𝑐                                is the speed of light in a vacuum 

𝑇                                is the tropospheric delay 

𝐼                                is the ionospheric delay 

𝑒                                is the error in measurement 

 

After linearization, from Equation (14) the linearized pseudorange measurements (𝑧) can be expressed as,  

 



𝑃𝑘 − 𝜌𝑘 =

[
 
 
 
 
 
 
 
 
 −

𝑋1 −𝑋

𝜌1
−
𝑌1 − 𝑌

𝜌1
−
𝑍1 − 𝑍

𝜌1
   1 

−
𝑋2 −𝑋

𝜌2
−
𝑌2 − 𝑌

𝜌2
−
𝑍2 − 𝑍

𝜌2
   1

.

.

.

−
𝑋𝑚 − 𝑋

𝜌𝑚
−
𝑌𝑚 − 𝑌

𝜌𝑚
−
𝑍𝑚 − 𝑍

𝜌𝑚
   1
]
 
 
 
 
 
 
 
 
 

 [

∆𝑋
∆𝑌
∆𝑍
𝑐𝑑𝑡

] − 𝑐𝑑𝑡𝑘 + 𝑇𝑘 + 𝐼𝑘 + 𝑒𝑘  (15) 

 

𝑧∗ = 𝐻Δ𝑥 + 𝜐 (16) 

 

Δ𝑥 = (𝐻𝑇𝐻)−1𝐻𝑇𝑧∗  (LSQ estimate) (17) 

Direct Position Estimation 

   

The direct position estimation approach (DPE), unlike the conventional approach, provides a navigation solution in a single 

step. DPE does not require a tracking loop to estimate code delay or Doppler to infer the associated PVT. The DPE approach 

directly estimates PVT from the received signal.  

 

Since we do not have information about the true signal parameters, to check the accuracy of the decomposed signal parameters 

of all available PRNs, we estimate the position through least square position estimation. To demonstate position estimation, a 

clean (spoof-free) section of the TEXBAT dataset [9] is decomposed using particle swarm decomposition. The output signal 

parameters �̂� are shown in Table 1 and the corresponding estimated position is shown in Figure 11 with a red marker, which 

is very close to the true position identified in  [12].  

 

 
Figure 11.  Estimated position with red marker in comparison with true position (3017’15.068” N, 9744’08.642” W) with blue marker. 

 

 



 

 

 

PRN Output Parameters (�̂�)  
�̂� �̂�  (𝐫𝐚𝐝) �̂�  (𝐜𝐡𝐢𝐩𝐬) �̂�𝑫(𝐇𝐳) 

23 1.0653 0.0128 756.558 693.63 

13 1.0791 -0.0669 295.0373 -1637.65 

3 1.0107 -0.0114 414.808 -526.06 

7 1.0681 -0.0792 806.6377 -1903.02 

6 1.0395 0.0033 821.1598 745.48 

16 0.9935 0.0141 945.6315 2842.46 
 

Table 1.  A table showing the output decomposed parameters from different PRNs in the clean TEXBAT dataset. 

 

Inverse receiver autonomous integrity monitoring 

 

Receiver autonomous integrity monitoring (RAIM) is used in GNSS receivers to assess the integrity of the signals received at 

any instant in time. RAIM detects faults with redundant GPS pseudorange measurements. That is, when more satellites are 

available than needed to produce a position fix, the extra redundancy provides a measure of the measurement consistency. For 

example, in residual-based RAIM, the test statistic is defined as the 2-norm of the residual vector r (i.e., the 2-norm difference 

between the estimated and observed measurements): 

  

𝑟 ≜ 𝑧∗ − 𝐻Δ�̂� (18) 

 

For spoofing detection, 6 satellite signals are decomposed into 3 signals each, resulting in n combinations of 6 satellites per 

set. In Figure 12, different satellites are represented with different colors. Using PSO, each of the satellites produces 3 outputs 

signals (authentic, spoofed, multipath; represented as 1, 2, and 3, respectively). Each set provides a position fix. If the sets 

contain all authentic and all spoofed signals, the residual 𝑟 will be small illustrating a consistency among the signals in the set, 

while other combination sets will not. Since we are interested in consistent sets, instead of inconsistent, we dub this process 

“Inverse RAIM”.  In Figure 13, we plot all the position fixes (red markers) with the true position shown as a blue marker. In 

Figure 14 (left), all 64 combination sets’ estimated positions are plotted by set number. As shown in Figure 14 (right), the 

residuals for all combinations are also shown.  Note that the residual of four combination sets, numbered 1, 5, 60, 64, are 

smaller in comparison to the rest.  In these results, satellite combination set 1 is the conjugate of satellite combination Set 64, 

which means that if one combination contains all the code phases from the first peak, the other combination contains code 

phases from the second peak.  

 

 

PRN 
 

Output code phase �̂�  (𝐜𝐡𝐢𝐩𝐬) 

  First peak Second peak 

23  965.1516 964.9815 

13  526.7222 525.1371 

3  635.2136 634.5055 

7  17.5546 16.0155 

6  6.3839 5.3196 

16  110.0041 108.2743 
 

Table 2.  A table showing the output decomposed parameters from different PRNs in TEXBAT dataset spoofing Scenario 4 (power 

matched position push). 

 



 
Figure 12.  Inverse receiver autonomous integrity monitoring concept with three decomposed signals from each satellite numbered as:           

(1) authentic signal, (2) spoofed signal, (3) multipath. 

 
Figure 13.  Estimated positions from different sets of satellite combination (authentic and spoofed) shown with red markers in comparison 

with true position (3017’15.068” N, 9744’08.642” W) with blue marker. 

 

 

In Figure 15, we show the estimated position error for 5 timestamps spanning over 100 seconds with 20 second intervals, for 

the 4 identified sets. This figure illustrates that combination set 64 has the least error in all three directions, hence likely 

representing the true position. As the TEXBAT paper [9] indicates for Scenario 4 (position push spoofing attack), the victim 

position changes 600 meters (equivalent to 2 chips) in the vertical direction, which seems to match set 1, albeit with a somewhat 

different magnitude than claimed in [7]. That, and given that Set 1 is the conjugate of combination of Set 64, shows that Set 1 

is the spoofing signal set.  Although in this analysis, we utilized the prior knowledge that TEXTBAT data corresponds to a 



static user in differentiating between the authentic and spoofed signals, such information about the user dynamics can also be 

realistically achieved using other aiding sensors (for example, inertial sensors).  With such aiding, spoofing attacks can not 

only be detected, but also mitigated by forcing the receiver to output the position estimate corresponding to the authentic 

combination set out of the decomposed signals.  

 

  
 

Figure 14.  Position fixes for 64 satellite combination sets (left) with red marker as true position, and residuals corresponding to those 

combination sets (right). 

  
 

Figure 15.  Position fixes for 4 satellite combination sets with minimum residuals (left) with red marker as true position, and residuals 

corresponding to those combination sets (right) over 100 seconds with 20 second time intervals. 

 

Figure 16 shows the results of decomposition and direct position estimation over 3 consecutive milliseconds. The actual 

positions should be constant over such a short time interval, but the exhibited variations in the estimated positions are still 

rather large.  We expect that increasing the coherent integration time in future work to 20 ms will help to reduce the error 

further. 



  
 
Figure 16.  Estimated positions from different sets of satellite combinations (authentic and spoofed) shown with red markers in comparison 

with true position (3017’15.068” N, 9744’08.642” W) with blue marker.  

 

CONCLUSION 

 

In this paper, we have shown a method for CCAF decomposition integrated with direct positioning and inverse RAIM for 

detecting and mitigating spoofing attacks.  This method decomposes the CCAF into three signals (authentic, spoofed, and 

multipath) and estimates the output component parameter vector �̂�. Decomposed output parameters are used for direct position 

estimation by combining different combination sets. We suggest a spoofing monitor based on pseudorange residual errors.  Out 

of all the combination sets, only two will be consistent in a RAIM sense: when all the authentic signals from each PRN are 

together in one set, and when all the spoofed signals from each PRN are together in another.  We also demonstrated how the 

decomposition of the signals allowed continuous tracking and estimation of the true position.  Future efforts will include 

increasing the coherent integration time to get better estimates of code phases and implementing measurement correlation in 

the decomposition cost function to reduce the error. Also, integrating inertial sensors with CCAF decomposition and inverse 

RAIM will mitigate spoofing attacks even for dynamic users. 
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APPENDIX 

 

Here we derived the approximation in equation 4 from the expression given: 

𝑆 =  
√𝐶

𝑇𝐶𝑂
 ∫ 𝑥(𝑡)𝑥(𝑡 − 𝜏) exp(2𝜋(𝑓𝐷 − 𝑓�̅�)𝑡 + 𝜃 − �̅�)𝑑𝑡

𝑇𝐶𝑂

0

 (19) 

Taking the expected value of the signal and not taking amplitude and phase term into consideration as it is time invariant 

𝑆 =  𝐸 {
1

𝑇𝐶𝑂
 ∫ 𝑥(𝑡)𝑥(𝑡 − 𝜏) exp(𝑗2𝜋∆𝑓𝐷𝑡)𝑑𝑡

𝑇𝐶𝑂

0

} (20) 

 

 

 

 

 



  
Figure A.  Case where incoming code chip misaligned with local code chip early (left) and late (right) 

Case 1 : −𝑻𝑪 < 𝝉 < 𝟎 

When incoming code delay is received early with respect to the local generated code  

𝑆 =  
1

𝑇𝐶𝑂
 ∑∫ exp(𝑗2𝜋∆𝑓𝐷𝑡)𝑑𝑡

(𝑛+1)𝑇𝐶+𝜏

𝑛𝑇𝐶

𝑁−1

𝑛=0

 

 

(21) 

where:  

𝑇𝐶 is the duration of one chip 

N is the number of code periods 

 

And, 

𝑇𝐶𝑂 = 𝑁𝑇𝐶 (22) 

 

𝑆 =  
1

𝑗2𝜋𝑓𝐷

1

𝑇𝐶𝑂
∑{exp(𝑗2𝜋∆𝑓𝐷((𝑛 + 1)𝑇𝐶 + 𝜏)) − exp(𝑗2𝜋∆𝑓𝐷𝑛𝑇𝐶)

𝑁−1

𝑛=0

 (23) 

 

𝑆 =  
1

𝑗2𝜋𝑓𝐷𝑇𝐶𝑂
[exp(𝑗2𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏) − 1]∑ exp(𝑗2𝜋∆𝑓𝐷𝑛𝑇𝐶)

𝑁−1

𝑛=0

 (24) 

 

Assume, α ≅ exp(𝑗2𝜋∆𝑓𝐷𝑇𝐶) 

c = 1 + α + α2 +⋯+ α𝑁−1 
(25) 

αc = α + α2 +⋯+ α𝑁−1 + α𝑁 
(26) 

(1 − α)c = 1 − α𝑁 
(27) 

𝑐 =
1 − α𝑁

1 − α
 

(28) 

𝑐 =
1 −  exp(𝑗2𝜋∆𝑓𝐷𝑁𝑇𝐶)

1 −  exp(𝑗2𝜋∆𝑓𝐷𝑇𝐶)
 

(29) 

 

𝑐 =
exp(−𝑗𝜋∆𝑓𝐷𝑇𝐶𝑂) − exp(𝑗𝜋∆𝑓𝐷𝑇𝐶𝑂)

exp(−𝑗𝜋∆𝑓𝐷𝑇𝐶) − exp(𝑗𝜋∆𝑓𝐷𝑇𝐶)

exp(𝑗𝜋∆𝑓𝐷𝑇𝐶𝑂)

exp(𝑗𝜋∆𝑓𝐷𝑇𝐶)
 (30) 

𝑐 =
sin(𝜋∆𝑓𝐷𝑇𝐶𝑂)

sin(𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) (31) 

𝑆 =  
1

𝑗2𝜋𝑓𝐷𝑇𝐶𝑂
[exp(𝑗2𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏) − 1] 

sin(𝜋∆𝑓𝐷𝑇𝐶𝑂)

sin(𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) (32) 

 

𝑆 =  
1

𝑗2𝜋∆𝑓𝐷𝑇𝐶𝑂
[cos(2𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏) − 1 + 𝑗sin(2𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)] 

sin( 𝜋∆𝑓𝐷𝑇𝐶𝑂)

sin( 𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) 

(33) 

 



𝑆 =  
1

𝑗2𝜋∆𝑓𝐷𝑇𝐶𝑂
[−2sin2(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)

+ 𝑗2sin(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)cos(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)] 
sin( 𝜋∆𝑓𝐷𝑇𝐶𝑂)

sin(𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) 

(34) 

𝑆 =  
1

𝑗𝜋∆𝑓𝐷𝑇𝐶𝑂
sin(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏) sin(𝜋∆𝑓𝐷𝑇𝐶𝑂) [−sin(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)

+ 𝑗cos(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)] 
1

sin(𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) 

(35) 

Using identities 

1

𝑗
= exp (−𝑗

𝜋

2
)       and         −sin (𝜙) + 𝑗cos(𝜙) = cos (

𝜋

2
+ 𝜙) + 𝑗sin(

𝜋

2
+ 𝜙) 

 

𝑆 = exp (−𝑗
𝜋

2
) sinc( 𝜋∆𝑓𝐷𝑇𝐶𝑂) 

sin(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏))

sin( 𝜋∆𝑓𝐷𝑇𝐶)
 exp (𝑗

𝜋

2
+ 𝑗𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)) exp(𝑗𝜋∆𝑓𝐷(𝑁

− 1)𝑇𝐶) 

 

(36) 

𝑆 = sinc( 𝜋∆𝑓𝐷𝑇𝐶𝑂) 
sin(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏))

sin( 𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑇𝐶𝑂 + 𝜏)) 

(37) 

Case 2 : 𝟎 < 𝝉 < 𝑻𝑪𝑶 

When incoming code delay is received late with respect to the local generated code  

 

𝑆 =  
1

𝑇𝐶𝑂
 ∑∫ 𝑥(𝑡)𝑥(𝑡 − 𝜏) exp(𝑗2𝜋∆𝑓𝐷𝑡) 𝑑𝑡

(𝑛+1)𝑇𝐶

𝑛𝑇𝐶+𝜏

𝑁−1

𝑛=0

 (38) 

𝑆 =  
1

𝑗2𝜋∆𝑓𝐷

1

𝑇𝐶𝑂
∑𝑥(𝑡)𝑥(𝑡 − 𝜏) {exp(𝑗2𝜋∆𝑓𝐷(𝑛 + 1)𝑇𝐶) − exp(𝑗2𝜋∆𝑓𝐷(𝑛𝑇𝐶 + 𝜏))

𝑁−1

𝑛=0

 (39) 

𝑆 =  
1

𝑗2𝜋∆𝑓𝐷𝑇𝐶𝑂
[exp(𝑗2𝜋∆𝑓𝐷𝑇𝐶) − exp(𝑗2𝜋∆𝑓𝐷𝜏)]∑ 𝑥(𝑡)𝑥(𝑡 − 𝜏) exp(𝑗2𝜋∆𝑓𝐷𝑛𝑇𝐶)

𝑁−1

𝑛=0

 (30) 

From (31), using the expression we get 

 

𝑆 =  
1

𝑗2𝜋∆𝑓𝐷𝑇𝐶𝑂
[exp(𝑗2𝜋∆𝑓𝐷𝑇𝐶) − exp(𝑗2𝜋∆𝑓𝐷𝜏)] 

sin(𝜋∆𝑓𝐷𝑇𝐶𝑂)

sin(𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) 

(41) 

𝑆 =  
1

𝑗2𝜋∆𝑓𝐷𝑇𝐶𝑂
[cos(2𝜋∆𝑓𝐷𝑇𝐶) − cos(2𝜋∆𝑓𝐷𝜏) + 𝑗[sin(2𝜋∆𝑓𝐷𝑇𝐶)

− sin(2𝜋∆𝑓𝐷𝜏)]] 
sin(𝜋∆𝑓𝐷𝑇𝐶𝑂)

sin(𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋𝑓𝐷(𝑁 − 1)𝑇𝐶) 

(42) 

𝑆 =  
1

𝑗2𝜋∆𝑓𝐷𝑇𝐶𝑂
[−2sin(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏))sin(2𝜋∆𝑓𝐷(𝑇𝐶 − 𝜏))

+ 𝑗2cos(𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏))sin(2𝜋∆𝑓𝐷(𝑇𝐶 − 𝜏))] 
sin(𝜋∆𝑓𝐷𝑇𝐶𝑂)

sin(𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) 

(43) 

 



𝑆 = exp (−𝑗
𝜋

2
) sinc( 𝜋∆𝑓𝐷𝑇𝐶𝑂) 

sin(𝜋∆𝑓𝐷(𝑇𝐶 − 𝜏))

sin( 𝜋∆𝑓𝐷𝑇𝐶)
 exp (𝑗

𝜋

2
+ 𝑗𝜋∆𝑓𝐷(𝑇𝐶 + 𝜏)) exp(𝑗𝜋∆𝑓𝐷(𝑁 − 1)𝑇𝐶) 

(44) 

 

𝑆 = sinc( 𝜋∆𝑓𝐷𝑇𝐶𝑂) 
sin(𝜋∆𝑓𝐷(𝑇𝐶 − 𝜏))

sin( 𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑇𝐶𝑂 + 𝜏)) 

(45) 

Combining equation (37) and (45), we get  

𝑆 = {
sinc( 𝜋∆𝑓𝐷𝑇𝐶𝑂) 

sin(𝜋∆𝑓𝐷(𝑇𝐶 − |𝜏|))

sin( 𝜋∆𝑓𝐷𝑇𝐶)
exp(𝑗𝜋∆𝑓𝐷(𝑇𝐶𝑂 + 𝜏))             − 𝑇𝑐 < 𝜏 < 𝑇𝑐

0                                                                                                        otherwise

 (46) 

 

𝑆 = {
sinc( 𝜋∆𝑓𝐷𝑇𝐶𝑂) 

sin(𝜋∆𝑓𝐷(𝑇𝐶 − |𝜏|))

sin( 𝜋∆𝑓𝐷𝑇𝐶)
exp (𝑗𝜋∆𝑓𝐷𝑇𝐶𝑂(1 +

𝜏

𝑇𝐶𝑂
))             −𝑇𝑐 < 𝜏 < 𝑇𝑐

0                                                                                                        otherwise

 (47) 

 

Since, 

|𝜏| < 𝑇𝑐     &     
𝜏

𝑇𝐶𝑂
< 10−3 ≪ 1 

And, 

lim
𝑓→0

sin(𝜋∆𝑓𝐷(𝑇𝐶 − |𝜏|))

sin( 𝜋∆𝑓𝐷𝑇𝐶)
= (1 −

|𝜏|

𝑇𝐶
) 

 

𝑆 = { (1 −
|𝜏|

𝑇𝐶
) sinc( 𝜋∆𝑓𝐷𝑇𝐶𝑂) exp(𝑗𝜋∆𝑓𝐷𝑇𝐶𝑂)             −𝑇𝑐 < 𝜏 < 𝑇𝑐

  0                                                                                                        otherwise

 (48) 

 

Finally, the approximation is written as  

 

𝑆(√𝐶, 𝜏, 𝑓𝐷 , 𝜃; �̅�,  𝑓�̅� , �̅�) = √𝐶 𝑅(𝜏 − �̅�) sinc(𝜋(𝑓𝐷 − 𝑓�̅�)𝑇𝐶𝑂) exp(𝑖𝜋((𝑓𝐷 − 𝑓�̅�)𝑇𝐶𝑂 + 𝜃 − �̅�))  


