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ABSTRACT

Most navigation applications nowadays rely heavily on Global Navigation

Satellite Systems (GNSSs) and inertial sensors. Both of these systems are known

to be complementary, and as such, their outputs are very often combined in an ex-

tended Kalman Filter (KF) to provide a continuous navigation solution, resistant to

poor satellite geometry, as well as radio frequency interference.

Additionally, recent development in safety critical applications (such as avia-

tion) revealed the performance limitations of current algorithms (Advance Receiver

Autonomous Integrity Monitoring - ARAIM) to vertical guidance down to 200 feet

above the runway (LPV-200). When nominal constellations are depleted, LPV-200

can only sparsely be achieved. Exploiting satellite motion in ARAIM (for instance us-

ing a KF) could help alleviate those limitations, but would require adequate modeling

of the errors, including the error’s time correlation.

Power Spectral Density (PSD) bounding is a methodology that provides high

integrity, time correlated error models, but this approach is currently limited to sta-

tionary errors (which is rarely the case with real data), and has never been applied

to navigation errors. More generally, no high integrity, time correlated error models

have ever been derived for navigation errors.

As a result, in the first part of this thesis, a methodology for high integrity

modeling of time correlated errors is introduced. The PSD bounding methodology is

extended to both stationary and non-stationary errors.

In the second part of this thesis, these methodologies are applied to the 3

main error sources impacting iono-free GNSS measurements (orbit and clock errors,

tropospheric errors and multipath), as well as to inertial errors.

The methodology introduced in this dissertation provides high integrity time

xix



correlated error models and is applicable to any type of applications where high in-

tegrity is required (e.g. Differential GNSS - DGNSS, Aircaft Based Augmentation

System - ABAS, Ground Based Augmentation System - GBAS, Space Based Aug-

mentation System - SBAS, etc...). Additionally, the error models derived here are

not only limited to high integrity applications, but could also be used in applications

were the correlation over time of the errors plays an important role (such as any KF

integration).

In the last part of this dissertation, we focus on a specific safety critical ap-

plication: aviation, and in particular ARAIM. The dissertation is concluded with an

assessment of the performance improvements provided by recursive ARAIM, using

those bounding dynamic error models, with respect to those models, used for base-

line snapshot ARAIM. Additionally, a sensitivity analysis is performed on each of the

error model parameters to assess which of them impacts the KF performance (i.e.

covariance) the most.

xx
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CHAPTER 1

INTRODUCTION

1.1 Introduction to navigation systems

With the creation of new transportation systems in the 17th and 18th Cen-

turies came the development of more and more ingenious navigation tools, most of

which were based on observation of celestial bodies and the prior knowledge of their

position. The Industrial Revolution in the 18th Century and the development of the

first combustion engine in early 19th Century propelled the creation of more mod-

ern navigation means, two of which are the cornerstone of this thesis: Inertial and

Satellite Navigation.

1.1.1 Inertial Navigation Systems. Practical Inertial Navigation Systems (INSs)

have been available since the 1950s but were initially very large and very costly. Over

the years, their prices and sizes have decreased, and most INSs can now be classified

into one of four categories: consumer, industrial, tactical or navigation grade.

These systems use inertial sensors to estimate and track their relative position

(with motion sensors) and attitude (with rotation sensors). Newton’s laws tells us

that a body’s motion will uniformly follow a straight line unless disturbed by an

external force. Hence, acceleration measurements provided by an inertial sensor can

be mathematically integrated with respect to time to obtain relative position and

velocity estimates. Acceleration measurements are provided by a specific type of

inertial sensors: accelerometers. To navigate, it is important to keep track of the

direction in which the accelerometer is pointing. Gyroscopes are inertial sensors

that measure the body’s angular rates. Once integrated, they can provide attitude

estimates.
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To obtain 3D estimates of a body’s position and attitude, 3 sets of each of

these sensors are commonly placed in an orthogonal basis. This ensemble of sensors

is referred to as an Inertial Measurement Unit (IMU).

These types of sensors perform what is called ”dead-reckoning”, meaning they

can only estimate relative positions. Additionally, when the sensors’ measurements

are integrated, the noise impacting these measurements is integrated as well, resulting

in the creation of a large drift over time. Depending on the INS’ grade, those drifts

can become more or less incapacitating.

To cope with these limitations, INS measurements are commonly combined

with absolute positioning measurements from GNSS.

1.1.2 Global Navigation Satellite Systems. On October 4, 1957, the Soviet

Union launched Sputnik: the first satellite to successfully orbit the earth. While

analyzing Sputnik’s transmitted radio signal, a group of researchers from the Applied

Physics Laboratory at Johns Hopkins University noticed that the frequency of its

radio signals increased as the satellite approached, and decreased as it moved away.

This phenomenon, known as Doppler effect, was later used to estimate the satellite’s

location and track its movement from the earth. This observation led the scientists to

believe that a reversed approach to this problem could be possible: if a receiver on the

ground can estimate a satellite’s location, then a receiver can probably estimate its

location by its distance from a satellite. This discovery led to the creation, in 1958, of

the Transit system: the first GNSS. Initially developed by John Hopkins University;

it transitioned to the Navy in the mid-1960s and provided continuous service by 1964

using Low Earth Orbit (LEO) satellites. Transit could deliver up to tens of meters

accuracy (depending on the number of observations used) for 28 years, before being

superseded by the Global Positioning System (GPS) in 1996.
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The GPS system has now been fully operational for over 25 years and is slowly

being complemented with additional constellations [2, 3], making satellite navigation

more accurate and available to an increasing number of applications.

• The GPS constellation (USA) is comprised of 32 satellites in 6 equally spaced

orbital planes. The satellites are placed in Medium Earth Orbit (MEO) with a

nominal period of 11 hours, 58 minutes and 2 seconds, repeating their geometry

each sidereal day enabling global coverage for continuous and instantaneous

position fixes.

• The Galileo constellation (EU) has a Full Operational Capability (FOC) of

27 operational and 3 spare MEO satellites, spread on 3 orbital planes. Their

geometry will repeat every 10 sidereal day, with a period of 14 hours, 4 minutes

and 45 seconds.

• The GLONASS constellation (Russia) consists of 24 MEO satellites distributed

over 3 orbital planes. They have a nominal period of 11 hours, 15 minutes and

44 seconds, repeating the geometry every 8 sidereal days.

• The BeiDou constellation (or COMPASS - China) will consist of 35 satellites,

including 5 in Geostationary orbits (GEO) and 30 in non-GEO satellites in

near-circular orbits. Among the non-GEO satellites, 3 are in Inclined Geosyn-

chronous Satellite Orbits (IGSO) and 27 are in MEO with an orbital period of

12 hours and 53 minutes, repeating their ground track every 7 sidereal days.

Each of these GNSS constellations are divided into 3 main segments, as represented

in Figure 1.1:

• The space segment is composed of GNSS satellites (e.g. 32 for GPS) orbiting the

earth typically in MEO. Each GNSS constellation has its own fleet of satellites,
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arranged in orbit to provide their desired coverage. The satellites broadcast

ranging signals to the user segment that can be used for Position, Navigation,

and Timing (PNT). These signals contain information that identifies the satel-

lite, and provides satellite orbit information (the ephemeris), a satellite range

estimate of the signal, and a rough estimate of where other satellites in the

constellation are (the almanac).

• The control segment consists of master stations, data upload stations, and mon-

itor stations. The master station(s) generate the satellite’s orbit and clock pa-

rameters based on measurements collected by the monitor stations, in order to

maintain accuracy. The monitor stations are scattered around the globe and

continuously monitor the constellation’s signals and status. The master sta-

tion(s) then analyses these observables and uplink fresh orbit and clock products

to the satellites via the data uplink stations.

• The user segment consists of the multitude of (governmental and civilian) re-

ceivers around the globe (terrestrial, aviation, and beyond) where each receiver

processes the GNSS satellites’ signals to determine the users position and time.

The GNSS concept relies on the principle of multilateration. Each satellite

transmits a so called ranging signal containing (among other information) the time

of emission of the signal from the satellite. As the user receives this signal, it can

estimate its distance from the satellite by estimating the difference between the time

of emission and the time of reception of the signal. Knowing its distance from multiple

satellites, the user can apply multilateration to estimate their position. In theory, a

minimum of three measurements are needed to estimate the 3D coordinates of a user.

In practice, since most receivers use low-cost quartz-oscillator clocks, their deviation

from GNSS time needs to be estimated as well, bringing the total number of unknowns

to 4.
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Figure 1.1. Representation of the GNSS segments

Over the years, GNSS has become essential for applications ranging from agri-

culture, mining and construction, to aviation, rail, harbor and autonomous naviga-

tion. With each of these applications, comes a different set of accuracy, integrity and

continuity requirements. In this thesis, we focus on safety critical applications.

1.1.3 Navigation Integrity & Continuity. For safety critical applications, such

as aviation, it is commonplace to consider performance metrics other than accuracy,

namely integrity, continuity, and availability. Because of the safety critical aspect

of civil aviation applications, integrity is of the utmost importance as it guaranties

that the system is protected against rare event faults such as satellite/constellation

failures.

The ICAO Standards and Recommended Practices (SARPs) [4] defines these

four performance metrics, for the aviation domain, as follows [5]:

Integrity is “a measure of the trust that can be placed in the correctness of the

information supplied by the total system. Integrity includes the ability of a system

to provide timely and valid warnings to the user (alerts)”. The Integrity Risk (IR) is
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defined as the probability of an undetected system error or fault causing Hazardous

Misleading Information (HMI), which may result in a large positioning error. The

integrity risk is quantified when the user computes its error bounds (Protection Level

- PL) at each epoch and compares them to a pre-defined Aert Limit (AL). Depending

on the applications and/or the flight operation level, those probabilities must remain

within a certain range, between 10−7 and 10−9.

Continuity is “the capability of the system to perform its function without

unscheduled interruptions during the intended operation, expressed as a probability”.

The Continuity Risk (CR) is the sum of probability of two separate events: when a

false alarm occurs and cannot be excluded (FANE), and when a fault is detected and

cannot be excluded (FDNE). Once again, these requirements will vary depending on

the application and operational level.

Accuracy is “defined as the difference between a computed and a true po-

sition”. Position estimated at any location must be within a pre-defined accuracy

bound 95% of the time in order to meet the system’s accuracy requirements (for GPS

and Galileo).

Availability is “the portion of time (...) during which the system provides re-

liable navigation information” (i.e. is simultaneously meeting the accuracy, integrity

and continuity requirements). Availability is a key performance metric since it mea-

sures the operational performance of a navigation system.

1.2 Introduction to ABAS

For safety critical applications such as aviation, where the user is traveling at

considerable speed and can quickly deviate from its flight path, integrity is of the

utmost importance. Three types of augmentations were developed to complement

GNSS with the aspect of integrity: ABAS (Aircraft Based Augmentation Systems),
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GBAS (Ground Based Augmentation System) and SBAS (Space Based Augmenta-

tion System). These augmentation systems can be divided into two subgroups: the

independent algorithms (ABAS) and the ones dependent on external data (GBAS/S-

BAS). In particular, the ABAS system, independent of external processes, augments

and/or integrates the information obtained from the other GNSSs with additional

(integrity) information available on board the aircraft.

Over the years, the GNSS community has pushed to develop an ABAS solu-

tion that would ensure integrity in the civil aviation domain down to Non Precision

Approaches (NPA), such as Receiver Autonomous Integrity Monitoring (RAIM).

RAIM is a user algorithm that makes use of measurement redundancy from

5 or more satellites to check for the relative consistency among them and, in case of

fault detection, exclude the most likely faulted measurement(s)/satellite(s). As we

know, a minimum of four satellites are needed in order to compute a 3D position

estimate. In practice, a user on earth will observe more than 4 satellites in view at

any time. If at least five are visible, the user can in theory use that redundancy to

detect a faulty measurement. This is Fault Detection (FD), a core concept of RAIM.

If at least six satellites are available, the faulty satellite can be excluded as well. This

is Fault Detection & Eclusion (FDE). The most commonly used method for fault

detection is Multiple Hypothesis Solution Separation (MHSS), which relies on the

computation of test statistics to extract the faulty measurement(s) [6].

To evaluate the integrity and continuity performance of a system, PL are com-

puted. PLs are bounds on the uncertainty of the estimated position. The Horizontal

Protection Level (HPL) is the radius of a circle around the true position in the hor-

izontal domain. The Vertical Protection Level (VPL) is a similar distance in the

vertical domain. Both of these bounds describe the region that is assured to contain

or bound the provided position to a very high probability. To ensure integrity, these
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bounds are compared to a-priori specified AL: the probability that the true position

lies outside of these bounds is called the Integrity Requirement IREQ (see Figure 1.2).

The aircraft is considered to be operating safely if no PL exceeds its associated AL.

Figure 1.2. Navigation integrity representation

RAIM was developed on GPS L1-C/A signals and was only intended to support

lateral navigation. For vertical guidance, Advanced RAIM (ARAIM) was developed,

and takes advantage of:

− Frequency diversity: ARAIM is a multi-frequency system that enables iono-free

measurements, eliminating a major source of error: the ionosphere.

− Geometry diversity: ARAIM is a multi-constellation system that takes advan-

tage of the increasing number of constellations, and hence satellites available to

the user.

− Integrity Support Message: ARAIM uses safety assertions on each of the GNSS

constellations to augment the navigation solution. These safety assertions (e.g.

probability of satellite fault, probability of constellation fault...) are contained

in the Integrity Support Message (ISM), and available onboard the aircraft.
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1.3 Prior work & research motivation

RAIM was initially intended to support horizontal guidance for aircraft during

en-route flights using GPS L1 only. Extensive efforts have been made to develop a new

dual frequency, multi-constellation ARAIM FDE method. ARAIM is now intended

to support applications such as vertical guidance (LPV-200). However, [7] showed

that when nominal GPS and Galileo constellations are depleted, LPV-200 could only

be sparsely achieved. Further, snapshot ARAIM cannot provide better performance

than LPV-200 even under optimistic constellation assumptions.

Reference [7] describes a new ARAIM integrity monitoring method which ex-

ploits the motion of satellites from multiple constellations: batch ARAIM. Although

batch ARAIM was shown to be more computationally and memory expensive than

snapshot ARAIM, it can also provide dramatic performance improvements: meeting

the 10 m alert limit in nominal conditions and achieving LPV-200 requirements using

depleted constellations. By potentially achieving 10-meter ALs, sequential ARAIM

algorithms (using batch estimators or KFs) open the possibility to extend the scope of

ARAIM applications beyond aircraft navigation, to rail, harbor, or arctic navigation.

Although the batch implementation had the advantage of presenting minimal

modifications from the snapshot ARAIM algorithm, its computational power and

complexity would gradually increase (and potentially become un-manageable) with

the mission duration, especially when used in combination with high rate sensors

(such as inertial sensors). A KF implementation of ARAIM, on the other hand, could

help reduce the computational and memory cost of batch-ARAIM, while keeping the

benefits of incorporating satellite motion in ARAIM.

For safety critical applications (e.g. aviation), the error models considered

need to be bounding (e.g. they need to over-bound the actual errors encountered by
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the user/impacting the measurements). Additionally, since KF relies on filtering of

the errors over time, bounding error models that also account for the time correlation

of the errors are needed. Most error models developed in the literature are either

snapshot models (i.e. do not account for the stochastic dynamic of the errors) or are

not bounding (and can therefore not be applied to safety critical applications). Time

correlated, bounding error models still need to be developed.

A lot of research has been done in the field of high integrity error modeling.

Recently, the concept of Cummulative Distribution Function (CDF) over-bounding

was introduced by [8] and refined in [9]. Building on this prior work, [5] employed

over-bounding theory to define upper bounds on the variances of orbit and clock errors

for both GPS and Galileo satellites. If these error models are sufficient for snapshot

positioning, they however are not for time-sequential implementations because they

do not address the stochastic dynamics of the errors over time.

To account for this limitation, [10] derived an analytical bound on integrity risk

for time-sequential linear estimators using AutoCorrelation Function (ACF) bound-

ing of the errors impacting the navigation solution. But, this ACF-based approach

requires continuous, cumulative storage of all data and estimator coefficients over

time, and except for short, finite-horizon intervals, is unsuitable for KF implementa-

tions, especially in the case of high rate sensors. More recently, [11] introduced the

concept of PSD bounding. The PSD bounding method, unlike ACF bounding, is not

restricted to fixed-interval implementations and is compatible with Kalman filtering.

Therefore, in this thesis, we build up on the concept of PSD bounding (of the errors

impacting carrier phase measurements) and extend it to the more “realistic” case of

non-stationary errors. The error models developed are then incorporated in a KF

version of ARAIM: recursive ARAIM.

The methodology and error models derived in this work are not only applica-
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ble to ARAIM related applications, but also to any applications that could benefit

from high integrity models that account for the time correlated aspect of stochastic

processes (such as GNSS/INS integration). Indeed, extensive research [12] has been

done to show the numerous advantages of combining GNSS measurements with iner-

tial sensors. Combining GNSS and INS in a KF version of ARAIM has the potential

to:

• Benefit from satellite motion to meet LPV-200’s stringent (high integrity) re-

quirements,

• Provide robustness against radio frequency interference attacks (i.e. jamming,

spoofing),

• Improve continuity through sky obstructed areas, such as urban canyons.

Additionally, the rise of autonomous applications (urban, drones, maritime or

rail navigation) in recent years has increased the need for high integrity systems. Most

of these applications come with stringent requirements, and very low AL. Adapting

recursive ARAIM to these applications could be extremely beneficial.

The error models and methodology derived in this thesis could potentially help

improve the performance of these systems too.

1.4 Dissertation contributions

This dissertation contains five main contributions. They are outlined in the

following subsections.

1.4.1 Bounding models for random processes. PSD bounding is a powerful

tool used to provide high integrity, time correlated error models. But this methodol-

ogy is currently limited to stationary errors, and has never been applied to navigation
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errors. The definition of the statistical tools used in this dissertation to model GNSS

errors will vary depending on the stationarity of the errors involved. As a first step,

we introduce two stationary tests: the Levene test and the Kolmogorov Smirnov (KS)

test. Those two tests will be used in combination to determine whether our exper-

imental data is stationary or not. Additionally, non-stationarity is separated in 3

categories; the PSD bounding methodology is extended to each of these categories.

1.4.2 Developing GNSS & INS high integrity, time correlated error mod-

els. The 4 main error sources impacting iono-free signals are modeled:

− Orbit and clock errors: GPS and Galileo orbit and clock errors are de-

rived from existing code/carrier observables and final clock/orbit products (as

ground truth) for the years of 2018-2020. Each constellation’s data is divided

according to their two clock types: Cesium/Rubidium (Cs/Rb) for GPS and

Passive Hydrogen Maser/Rubidium Atomic Frequency Standard (PHM/RAFS)

for Galileo. The different clock characteristics are observed in the time and fre-

quency domain. Power Spectral Density bounding is then employed to derive

robust, time-correlated models of the orbit and clock errors for each of the

satellite clock types.

− Tropospheric errors: Tropospheric delays from 2018 are generated for 100

stations worldwide based on ground truth measurements. Two tropospheric

models are studied. The MinimumOperational Performance Standards (MOPS)

model, which is commonly used in many GNSS applications (e.g. aviation) and

requires little computational power. And the GPT2w model, which is computa-

tionally heavy and usually used in Geodetic applications. The advantages and

drawbacks of each models are brought up and compared against one another.

Specific scenarios (e.g. India’s monsoon seasons, or Hawaii’s 2018 transient

storm) are also evaluated to observe the quality of each model in these unique
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conditions. Each model’s residuals then have their PSDs upper bounded to

provide a robust model to these residuals.

− Multipath errors: Carrier multipath is characterized by performing the dif-

ference of carrier phase measurements on 2 different frequencies. The remaining

ionospheric delay is filtered out with a high pass filter whose parameters are de-

termined through an extensive analysis of local ionospheric delay. This filtering

approach to multipath characterization is novel and has never been done before.

Once multipath is characterized, the PSD bounding method is applied to it so

as to obtain a bounding model for multipath errors. There are two types of

multipath errors considered in this work:

– IIT Rooftop/experimental static multipath errors, for which the resulting

model will be used in our final KF implementation.

– Aircraft multipath errors, which will be used to show a methodology that

other users can apply to their own aircraft data.

− Inertial errors: Individual IMU errror components are modeled, and the

methodology is validated with experimental data. IMU errors can be mod-

eled as a sum of independent error components. These elements of gyroscope

and accelerometer errors can be analyzed using the Allan Variance (AV). The

AV method is often adopted by IMU manufacturers because it allows for the

identification of the different components of the IMU errors. Prior contributions

used an approach to robust error modeling, through PSD bounding, to ensure

KF output integrity. But the PSD obtained from raw inertial measurements

are often too noisy and inaccurate, resulting in an overly conservative model.

This leads us to our next main contribution:

1.4.3 Reinforcing AV bounding to provide high integrity models for in-
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ertial errors. Manufacturers tend to provide high quality AV curves that were

obtained under controlled environments. Leveraging these high accuracy AV curves,

for instance by bounding them, would be to the user’s best interests. We will show

however that AV bounding alone is not sufficient to provide high integrity, and will

derive additional criterion to that effect. This result has never been shown for these

specific cases before.

1.4.4 Exploiting satellite motion: Recursive KF positioning implementa-

tion. The error models derived in the above contributions are combined into this

KF implementation of (fault free) recursive ARAIM. This section outlines the details

of the KF ARAIM design. Unlike snapshot ARAIM, which relies on dual-frequency,

ionospheric-free carrier-smoothed-code measurements, recursive ARAIM mainly uses

raw iono-free carrier phase measurements. Dual-frequency iono-free code phase mea-

surement errors will be heavily influenced by antenna group delays (also refered to

as front end group delays), the dynamics of which cannot be modelled stochasti-

cally in a KF. Indeed, antenna group delays are deterministic processes: the errors

will change according to the antenna’s environment, as well as substantial platform

reorientations (e.g., turns, banks) and satellite line of sight variation. In principle,

this effect is calibratable, albeit not always easily for many platforms of interest, like

civil transport aircraft. Although much the same can be said for multipath, in this

case error dynamics are highly sensitive to small scale attitude motions and further

complicated by a multiplicity of reflective surfaces on platforms with complex shapes,

(again) like transport aircraft, making multipath far more amenable to stochastic

modelling. We focus on raw carrier phase measurements because their platform/an-

tenna dependent errors are restricted to multipath and thermal noise, which can be

modelled stochastically in a KF. Code measurements are used to aid in the initial-

ization of floating carrier cycle ambiguities, but they will not otherwise be used (or

needed) in the recursive ARAIM KF.
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To properly account for the time correlation of the errors present in the raw

carrier phase measurements (satellite orbit and clock errors, residual tropospheric

delay, multipath error, and thermal noise), bounding dynamic error models derived

in this dissertation are used. These bounding models are First Order Gauss Markov

Random Processes (FOGMRPs) incorporated into the KF by state augmentation.

Chapter 7 will describe the details of this implementation.

1.4.5 Performance assessment of Recursive positioning and interpretation

for aviation. An assessment of the performance improvements provided by re-

cursive ARAIM, compared to baseline snapshot ARAIM is achieved using bounding

dynamic error models. Selecting an example Chicago, IL location, PLs over one day

are analysed in both scenarios and compared to one another. These resulting PLs

will help us assess the performance of our system in terms of integrity and conti-

nuity. Additionally, a sensitivity analysis is performed on each of the error model

parameters to assess which of them impacts the KF performance (i.e. covariance) the

most. Finally, experimental data will be collected in our lab (Chicago, IL) and used

to validate the results obtained in the previous covariance analysis.

1.5 Dissertation outline

Chapter 2 of this dissertation outlines the specifics of a new methodology to

robustly model errors and their time correlation: Power Spectral Density Bound-

ing [11]. As outlined in the previous section, most error models developed in the

literature are either snapshot models (i.e. do not account for the stochastic dynamic

of the errors) or are not bounding (and can therefore not be applied to safety critical

applications). Applying PSD bounding theory to GNSS and INS errors has therefore

never been done, and the performance improvements of such bounding models have

never been quantified either.
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The following Chapters (3-6) apply this methodology to navigation errors

(GNSS and Inertials) and represent some of the main contributions of this thesis.

Those models are then incorporated in a recursive implementation of ARAIM, out-

lined in Chapter 7. Chapter 7 then evaluates the performance of said modifications

to state of the art ARAIM. Finally, Chapter 8 summarizes the different results ob-

tained in this dissertation and opens to a discussion on the possible advantages and

applications of such implementation.
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CHAPTER 2

TIME SEQUENTIAL ERROR MODELING: METHODOLOGY

The complementary properties of GNSS and INS are leveraged in algorithms

that filter their measurements over time, for example using a KF. The performance

of a KF is highly dependent on the quality of its error models. GNSS and INS

measurements are impacted by errors that include atmospheric delays, satellite orbit

and clock errors, multipath, accelerometer and gyroscope errors. Each source of error

must be carefully modeled. Since measurements are filtered over time, their error

time-correlation must be accounted for. This chapter focuses on the development of

a new, high integrity and time-correlated error modeling methodology.

In addition, in safety critical applications such as aviation applications, robust

and reliable error models must be derived to upper-bound the navigation integrity

and continuity risks. CDF overbounding [8] has been used extensively to bound risks

for snapshot, instantaneous least-squares position estimators. However, this approach

does not account for model uncertainty over time. Several approaches to upper-bound

navigation integrity risk while accounting for time correlated errors were developed,

but require large data processing and storage capabilities [10, 13, 14]. In the case of

high-update-rate inertial-aided navigation, these approaches present computational

and memory constraints that greatly limit the allowable filtering duration.

A new approach to overbound KF-based estimate error distributions in the

presence of uncertain time-correlated noise was developed in [11] . This approach

relied on upper bounding a modified PSD derived from the Fourier Transform (FT)

of a windowed ACF for stationary errors.

However, the treatment of experimental data for the modeling of wide-sense



18

stationary processes has yet to be formalized, and the case of non-stationary error pro-

cesses remains unaddressed. For instance, inertial measurements have non-stationary

noise components, flicker noise, that cannot directly be modeled using the approach

in [11] because the evaluation method of PSD and ACF may differ for such random

processes. Therefore, new modeling methods must be derived.

Section 1 of this chapter defines conditions used to classify error processes with

respect to their stationarity characteristics. Section 2 then develop robust modeling

approaches: for each type of error, experimental examples are given to demonstrate

the proposed methodology using actual data. Section 3 provides a practical descrip-

tion of the statistical tests used in this work to assess the stationarity of a finite data

set, and ends with a diagram summarizing this chapter.

2.1 Error classification

This section aims at classifying stationary and non-stationary processes. It

serves as outline for the remainder of the chapter where modeling methods are derived

for each category of non-stationary process.

2.1.1 Wide-Sense Stationary Errors. Mean values and autocorrelation func-

tions are key descriptors of a random process’ statistical properties. The mean value

of a random process x at time t can be expressed as:

µx(t) = E [x (t)] (2.1)

where E[ ] is the expected value operator. In addition, the correlation between the

values of the random process x at two different times t− τ/2 and t+ τ/2, also called

the ACF, is defined as:

Rxx(τ, t) = E
[
x
(
t+

τ

2

)
x
(
t− τ

2

)]
(2.2)

If µx(t) or Rxx(τ, t) change over time t, then process x is said to be non-
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stationary. If µx(t) and Rxx(τ, t) do not vary with t (i.e. µx(t) = µx and Rxx(τ, t) :=

Rxx(τ)), then process x is called Wide Sense Stationary (WSS). This definition of

stationarity is sufficient for our purposes moving forward. Note that we use different

notation for a stationary ACF Rxx and a non-stationary (instantaneous) ACF Rxx.

However, despite the simplicity of its definition, when dealing with a finite

number of samples from an experimental dataset, the stationarity of the stochastic

process can be challenging to assess. The following subsection addresses the classifi-

cation of non-stationary errors.

2.1.2 Non-Stationary Errors. When process x is non-stationary, the ACF in

Equation 2.2 is called an instantaneous ACF [15] and depends on both t and τ . This

function can be determined in one of two ways:

a) analytically, if the process is understood well enough to evaluate Equation 2.2,

or

b) using experimental data.

In practice, option (a) is rarely available. Obtaining sufficient data for option (b) is

only possible if the ACF variation over (real) time t are much slower than over the

lag time τ :

∂Rxx

∂t
≪ ∂Rxx

∂τ
(2.3)

In this dissertation, we consider two specific classes of non-stationary error

processes:

→ Condition 2.3 is satisfied, so that stationary sample ACFs can be computed.

→ Condition 2.3 is not satisfied, but the PSD of the process is not a function of

time and sample PSDs can be computed.
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The remaining case of fast-varying non-stationary processes with time-varying PSDs is

introduced in Chapter 4 by means of an example of rapid change in GNSS tropospheric

delay encountered during passage of a severe storm front. Such events will likely

need to be dealt with using real time detection and adaptation (e.g., measurement

exclusion) rather than stochastic modeling, and are therefore outside the scope of this

work.

The overall classification of error processes is summarized in Figure 2.1.

Figure 2.1. Error classification decision tree.

2.2 Frequency domain bounding of stationary input error processes

In [11], Langel et al. derived a frequency domain criterion for modeling sta-

tionary correlated noise through PSD error bounding. This section gives a simpler,

alternative proof of this criterion for time-invariant and time-varying KFs.

Because the KF is a linear filter, we can separately evaluate the impacts of

independent error sources, and then add their output contributions. Therefore, for

clarity of exposition in the following derivation, we consider a scalar KF fed by zero-

mean sensor data and process noise contributions.

2.2.1 Time-Invariant KF with WSS Input. We first consider the case of a
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steady-state KF fed by zero-mean stationary noise. Consider a scalar error input1

x(t) with PSD Sxx(f). In general, the KF is designed using Sxx(f) ̸= Sxx(f). The

transfer function of this KF from x(t) to some scalar output of interest y(t) is h(t)

(and its Fourier TransformH(f)). Note that the bar notation is used here to denote

the parameters used to design the KF. We will show later on that these parameters

are upper bounds of the true error, hence the notation.

The mean of the KF output error is zero (because the input is zero-mean),

and the true output error variance is

σ2
y =

∫ ∞

−∞
|H(f)|2Sxx(f)df. (2.4)

However, the KF will produce a predicted output error variance

σ2
y =

∫ ∞

−∞
|H(f)|2Sxx(f)df. (2.5)

Clearly, if Sxx(f) > Sxx(f) ∀f ∈ R, then σ2
y > σ2

y .

The PSD upper-bound Sxx(f) can be used to define a time-correlated mea-

surement error model that guarantees an upper bound on the KF estimation error

variance [11,16].

2.2.2 Time-Varying KF with WSS Input. Considering a time-varying filter

with transient response h(τ, t) to a unit impulse δ(τ), the filter’s output to an input

x(t) is described by the following convolution integral:

y(t) =

∫ ∞

−∞
h(α, t)x(t− α)dα, (2.6)

1The scalar function x(t) can represent any stationary sensor or process noise in-
put to the KF. It can be the sum of multiple error components—e.g., x(t) =

∑
i
xi(t).
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The variance of the output can then be derived as:

σ2
y(t) = E[y(t)2]

= E

{∫ ∞

−∞
h(α, t)x(t− α)dα

∫ ∞

−∞
h(β, t)x(t− β)dβ

}
=

∫ ∞

−∞

∫ ∞

−∞
h(α, t)h(β, t)E[x(t− α)x(t− β)]dαdβ

=

∫ ∞

−∞

∫ ∞

−∞
h(α, t)h(β, t)Rxx(α− β)dαdβ.

(2.7)

Using the Wiener-Khinchin theorem [17] to express the relationship between

the stationary ACF Rxx and the stationary PSD Sxx as:

Rxx(α− β) =

∫ ∞

−∞
Sxx(f)e

−i2πf(α−β)df, (2.8)

we can rewrite equation 2.7 as:

σ2
y(t) =

∫ ∞

−∞
Sxx(f)

∫ ∞

−∞
h(α, t)e−i2πfαdα

∫ ∞

−∞
h(β, t)ei2πfβdβdf

=

∫ ∞

−∞
Sxx(f)H(f, t)H(f, t)∗df,

(2.9)

σ2
y(t) =

∫ ∞

−∞
Sxx(f)|H(f, t)|2df. (2.10)

Similar to Equation 2.5 for the time-invariant case, Equation 2.10 shows that for a

time-varying KF: if Sxx(f) > Sxx(f) ∀f ∈ R, then σ2
y(t) > σ2

y(t) ∀t ∈ R+.

2.2.2.1 Experimental procedure. The PSD bounding methodology was first

introduced in [10,11,18]. The proposed methodology relied on a four step process:

• Estimate the sample ACF Rxx of the input process x (done with the matlab

function xcorr).

• Multiply it with a tapering window Λ. This tapering window is used to reduce

the spectral leakage generated by the implicit rectangular window when using

finite data.
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• Take the Fourier Transform of our modified/windowed ACF function, to obtain

the (modified) PSD of the process x.

• Derive a high integrity, time correlated error model by upper bounding the

PSDs.

This process is represented in Figure 2.2.

The finite nature of experimental data can be compared to applying a rectan-

gular window over a process. Rectangular windows, with their sharp edges, introduce

spectral leakage during the conversion from time domain to frequency domain, and

degrade the quality of the resulting PSD estimate. To counter this effect, tapering

windows are often used (e.g. Hamming window, Hann window). Additionally, it is

important to note that the longer the dataset, the more accurate the ACF estimate

will be. However, for most applications, the mission duration (let us call it T1) is

finite and the user will therefore not observe correlations longer than this mission

duration (i.e. flight duration - 18 hours for the longest on record). The information

contained in the ACF for lag times longer than the mission duration is therefore not

useful and can be leveraged in the windowing process, to reduce spectral leakage.

The window used in this work was developed in [18] and is expressed for each

lag time τ as:

Λ(τ, T1, T2) =



0, for τ < −T2

−1

e4η/(1−η2) + 1
+ 1, for − T2 ≤ τ < −T1

1, for − T1 ≤ τ ≤ T1

1

e4η/(1−η2) + 1
, for T1 < τ ≤ T2

0, for τ > T2

(2.11)
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where ±T2 are the lag times where the window achieves a value of zero and

η =


1− 2

T1 + τ

T1 − T2
, for − T2 ≤ τ < −T1

1 + 2
T2 − τ

T1 − T2
, for T1 < τ < T2

(2.12)

With this window, ACF values for lag times smaller than T1 remain untouched,

while ACF whose lag time values are larger than T2 are set to zero. The further away

T1 and T2 are, the less spectral leakage will impact the PSD estimate. A representation

of that window is shown in Figure 2.2, where T1 = 7h and T2 = 14h. The validity

and advantages of such window are detailed in [11].

Finally, the sample PSD estimate of the process x can be estimated by taking

the Fourier Transform of the windowed ACF. This step is expressed, in discrete form,

as:

Sx(f) =

T2∑
τ=−T2

Λ(τ, T1, T2)Rxx(τ)e
−j2πfτ for all f ∈ R+ (2.13)

2.2.3 Frequency Domain Bounding of Non-Stationary Input Error Pro-

cesses. In Section 2.1, for a non-stationary process x(t) at time t over lag time

τ , we defined a condition in Equation 2.3 on the instantaneous autocorrelation func-

tion Rxx(τ, t).This condition is used to categorize “slow” versus “fast” changing non-

stationarity. In this section, we present methodologies for error modeling in each of

these cases, which we then illustrate using experimental data in the following chapters.

2.2.3.1 Slowly Varying ACF: Condition 2.3 is Satisfied. If we can evaluate

Rxx(τ, t) using either method (a) or (b) described in Section 2.1.2, then we can also

define its instantaneous PSD as [15]:

Sxx(f, t) =

∫ ∞

−∞
Rxx(τ, t)e

−j2πfτdτ, (2.14)
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and conversely:

Rxx(τ, t) =

∫ ∞

−∞
Sxx(f, t)e

j2πfτdf. (2.15)

Let us assume a KF designed using Sxx(f, t) ̸= Sxx(f, t).

Following the development for the time-varying KF with stationary input pro-

cess in Section 2.2.2, we can express the output variance as:

σ2
y(t) =

∫ ∞

−∞

∫ ∞

−∞
h(α, t)h(β, t)Rxx(α− β, t)dαdβ, (2.16)

which leads to the following equation:

σ2
y(t) =

∫ ∞

−∞
|H(f, t)|2Sxx(f, t)df. (2.17)

In this case again, if Sxx(f, t) > Sxx(f, t) ∀f ∈ R, then σy2(t) > σ2
y(t) ∀t ∈ R+.

However, even if H(f, t) is time-varying, it is desirable for the input error

model PSD Sxx(f, t) to be time-independent. The reason is that it is difficult, if

not impossible, to ensure instantaneously-valid error models using experimental data

collected prior to the time the KF is actually implemented.

Thus, we follow a more robust and practical approach: we collect a long,

non-stationary, error dataset to capture the time variability in Sxx(f, t). We then de-

termine a time-invariant upper-bounding PSD such that Sxx(f) > Sxx(f, t) ∀t ∈ R+.

This is achieved by dividing a long continuous data set into smaller quasi-stationary

subsets that satisfy the condition of Equation 2.3, with center times t1, t2, . . . , tN , to

compute Sxx(f, t1),Sxx(f, t2), . . . ,Sxx(f, tN). We then find:

Sxx(f) ≥ max
1≥k≥N

Sxx(f, tk). (2.18)

In Chapters 3 and 4, we will apply this methodology to orbit and clock, and

tropospheric errors, which presents slow non-stationarity. The orbit and clock errors,

and tropospheric residuals will be partitioned in stationary sets, and the methodology
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described in Section 2.2.2 and Figure 2.2 will be applied to them to obtain bounding

models for the orbit and clock, and tropospheric errors.

2.2.3.2 Rapidly Varying ACF with Time-Invariant PSD. This section ad-

dresses the case where condition 2.3 is not satisfied and the PSD is not a function

of time. This category relates to processes that are non-stationary because they are

unstable - e.g. 1/fn noises: noise components for which the noise power is inversely

proportional to frequency.

In these cases, even if condition 2.3 is not satisfied, the input PSD is not a

function of time. It is therefore tempting to directly use Equations 2.17 and 2.18.

However, these equations were derived assuming that an instantaneous autocorrela-

tion function was obtainable, i.e., assuming Condition 2.3 was satisfied. Instead, in

this section, we evaluate the PSD using periodograms rather than the autocorrelation

function. We also assume that the KF error output process is stable (even if the input

is not), which would likely be true for any useful KF.

Theoretical development First, we can express the PSD of the output y(t) of a

time-invariant KF as:

Syy(f) = lim
T→∞

1

T
E{YT (f)YT (f)∗}

= lim
T→∞

1

T
E

{[
H(f)XT (f)

] [
H(f)XT (f)

]∗}
= |H(f)|2 lim

T→∞

1

T
E{XT (f)XT (f)

∗}

= |H(f)|2Sxx(f)

(2.19)

where the expectation operator E[ ] is the expected value operation over the finite

duration T , and XT (f) and YT (f) are the Finite Fourier Transforms of x(t) and y(t),

respectively, expressed as: YT (f) =
∫ T

0
y(t)e−j2πftdt.

As long as the output error process y(t) is stable, the following integrals con-
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verge:

σ2
y =

∫ ∞

−∞
Syy(f)df =

∫ ∞

−∞
|H(f)|2Sxx(f)df, (2.20)

which is the same form as in Equation 2.5, and the same conclusion on variance

bounding using a PSD bound Sxx(f) applies.

Next, we consider the PSD of the output y(t) of a time-varying KF, which can

be written as:

Syy(f, t) = lim
T→∞

1

T
E{YT (f, t)YT (f, t)∗}

= lim
T→∞

1

T
E

{[
H(f, t)XT (f)

] [
H(f, t)XT (f)

]∗}
= |H(f, t)|2 lim

T→∞

1

T
E{XT (f)XT (f)

∗}

Syy(f, t) = |H(f, t)|2Sxx(f)

(2.21)

Assuming a stable output error process y(t), we can express its variance at

time t as:

σ2
y(t) =

∫ ∞

−∞
Syy(f, t)df =

∫ ∞

−∞
|H(f, t)|2Sxx(f)df. (2.22)

This equation is of the same form as Equation 2.10 and the same conclusion on

σ2
y(t)-bounding using an Sxx(f) applies.

PSD estimation challenges for unstable errors In practice, estimating the

PSD Sxx(f) from experimental data to derive a model Sxx(f) is challenging. The

first limitation stems from the range of frequencies achievable using observations,

which is no greater than:

∆f ≤ f ≤ fN

where fN is the Nyquist frequency defined by the sampling interval ∆t: fN = 1
2∆t

.

The second limitation is the frequency resolution ∆f , which depends on the length

of the dataset TD: ∆f = 1
TD

. Therefore, the estimate of Sxx(f) is determined by TD

and ∆t, or in analogy by the sample rate and the number of samples considered.
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In addition, PSD estimates derived from periodograms are impacted by spec-

tral leakage, which can cause PSD bounds to be larger than necessary. In [10, 16]

and the previous subsections, PSDs are estimated using Fourier Transforms of ACFs

tapered with smooth-edged windows that limit leakage. Unfortunately, this approach

does not apply to the case of unstable errors: in this case, PSDs derived from peri-

odograms may be impacted by spectral leakage. In practice, a tapering window could

be applied to the data itself, but the impact it would have on the correlation time

(and hence the modeling) of the error would need to be studied further.

Additionally, and most importantly, a “loosely” controlled data collection en-

vironment (e.g. temperature variations or vibrations) can also contribute to degraded

measurements models. For instance, INS manufacturers often provide specifications

in the form of sensor error AV curves rather than PSDs. The specification document’s

error data is often of great quality, collected in highly controlled and stable environ-

ments using temperature and vibration isolation chambers. However, the parameters

extracted from these datasets often prioritize model accuracy over integrity, i.e., they

are not designed to overbound measurement error distributions. Taking advantage of

these high quality curves would be greatly beneficial to our modeling strategy. There-

fore, for unstable errors, instead of investigating the periodogram approach further,

we will complement PSD bounding with an AV-domain method. This method will

be applied to accelerometer and gyroscope errors in Chapter 6.

2.2.4 Allan Variance-Based Error Modeling for Inputs with Fast-Varying

Non-Stationarity. In navigation, flicker noises are the most common type of

fast-varying non stationarity observed and are usually encountered in one of two

scenarios: inertial errors or clock errors. In both cases, they do not appear isolated

but are nested amongst all other error sources. The AV approach is therefore often

chosen to differentiate and isolate various error contributors present in one data set.
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To leverage the results of Equations 2.5, 2.10, 2.17 and 2.22, we must show

that a bound in the AV domain also provides a bound in the PSD domain. The

relationship between AV (Σ2
x) and PSD (Sxx) can be expressed as [19]:

Σ2
x(τ) = 4

∫ ∞

0

sin4(πfτ)

(πτf)2
Sxx(f)df (2.23)

From Equation 2.23 it is not clear whether the mapping from the PSD do-

main to AV domain is one-to-one for all Sxx [20] (more details on this in Chapter

6). Therefore, the methodology in this subsection will vary depending on the errors

encountered:

→ Case (a): the errors are such that their mapping between the PSD domain and

the AV domain is one-to-one.

→ Case (b): one (or more) of the error components’ mapping is not one-to one

between the PSD and the AV domain.

In case (a), a bounding in the AV domain is a necessary and sufficient condition

to ensure a bounding in the PSD domain, and therefore a high integrity model.

Therefore, to model the errors of type (a), one can simply upper bound each error

component in the AV domain.

In case (b) however, bounding in the AV domain will not be sufficient, and an

additional step will be needed to ensure that the bound obtain in the AV domain is

also bounding in the PSD domain.

Because such methodologies are so specific to the type of errors encountered,

more details are provided in Chapter 6, where this methodology is applied to inertial

errors, impacted by (among other things) flicker noises which will be modeled as

FOGMRP, hence making the mapping in Equation 2.23 not one-to-one.
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2.3 Procedure: making the most out of experimental data

2.3.1 The accuracy versus stationarity dilemma. The following dilemma

arises when dealing with sample ACFs (applicable to all inputs apart of those with

Fast-Varying Non-Stationarity (cf., section 2.2.3.2)). On the one hand, if we use too

little data, the estimation of the expectation function in Equation 2.2 may be noisy

and inaccurate. But, on the other hand, if we use very long sets of data, the process

may not be stationary over the entire data collection period.

To get some guidance on how much data is needed to obtain an accurate

ACF estimate (and later, an accurate PSD estimate), let us analyze the example of

a zero-mean FOGMRP with an ACF expressed as:

Rxx(t) = σ2
xe

−|t|/τx (2.24)

where

τx is the time constant of the FOGMRP x, and

σ2
x is the variance of the random process x.

The variance of the sample ACF (R̂xx) is given by:

σ2
R̂xx
(t) ≈ σ4

x

(
τx
T

+
2t+ τx
T

e−2t/τx

)
(2.25)

where t is the lag time, τx is the process time constant, and T is the length of data

used in the estimation of the ACF. This result is derived in Appendix B.

Figure 2.3 presents these standard deviations of the ACF estimates for an

example FOGMRP in Equation 2.25 with τx = 6 h, σx = 1.5 m. The curves are shown

for various lengths of data T (color-coded curves) as a function of lag time (x-axis).

Let us assume, for now, that this FOGMRP can be used as a rough approximation

of GNSS satellite orbit and clock errors (for instance). The standard deviations
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Figure 2.3. Upper bound on standard deviation of ACF estimate (τx = 6 h, σx = 1.5
m)

of the ACF estimates (y-axis) are expressed in meters squared because the curves

represent variations in orbit and clock error ACF estimation. For example, at lag

time zero, the different curves capture the uncertainty in sample variance estimation

error as a function of the length of data used. As T increases towards infinity, σR̂xx

decreases towards zero: the longer the dataset, the more accurate the ACF estimate

will become.

Using 14 days of data, the standard deviation of the ACF estimate is close to

0.3 m2 at a lag time of 20 hours, whereas using 1 year of data the standard deviation

is about 0.06 m2 at the same lag. The results in Figure 2.3 show that the longer the

data set used to estimate the ACF, the lower the uncertainty. However, there appears

to be diminishing benefit in using data lengths much longer than 3-6 months. But

the question of stationarity testing remains.

2.3.2 Stationarity testing of correlated data. In the case of real data analysis,

the number of sample function to analyse is usually limited, and the mean and ACF

obtained are only estimates of the errors’ true mean and ACF. Therefore, assess-
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ing the stationarity of an error from real data cannot be done solely by looking at

their estimated mean and ACF but must be done with a more thorough analysis of

their statistical properties. In this work, two statistical tests are combined to assess

stationarity.

The Levene test [21] is a statistical test that compares the variances of two or

more sets of data. It tests the null hypothesis according to which the variances of the

populations are equal (homoscedastic). Each data set to be tested for stationarity

through the Levene test will be divided into 4 segments. The variances of each of

these segments will then be compared to each other.

The two-sample Kolmogorov-Smirnov (KS) test [22] determines whether two

sample sets come from the same distribution. In this work, the data sets to be tested

with the KS test will be divided into two segments and the distributions of these two

segments will be compared to one another.

Taking advantages of these two approaches, we will combine the Levene and

the KS test to determine whether a data set is stationary. By combining these two

tests, we ensure that the stationarity is verified in terms of variances (Levene test), as

well as overall distributions (KS test). Both tests are performed with a 95% confidence

level (i.e., p-value of 0.05). If both tests come back positive, the data is considered

stationary.

However, both tests assume that the samples are independent. This is not the

case for the actual GNSS or INS error data. To approximate the effective number

of independent samples we use the properties of a FOGMRP. While the sample data

processes are obviously not known to be FOGMRP a-priori, we use this as reasonable

approximation (which the data - and their PSDs - will verify later) to determine the

effective number of independent samples. Appendix D shows that two samples of a
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FOGMRP with time constant τx can be considered independent if they are separated

by a period larger than or equal to 2τx. Therefore, to test stationarity, the data is re-

sampled at regular 2τx intervals, where τx is the estimated FOGMRP time constant

of the said dataset.

Note that if the process studied is not FOGMRP, a similar approach to the

one described in [16] will need to be performed to determine what the number of

independent samples is for this specific process type (more details in Appendix D).
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CHAPTER 3

ORBIT AND CLOCK ERRORS MODELING

In a perfect GNSS positioning scenario, a user’s position is estimated by con-

verting the transmission/reception time difference (time of flight) to a distance be-

tween the receiver and the satellite (range) and applying trilateration principles be-

tween 3 different satellites’ ranging estimates. In practice however, this estimation

problem is much more complex. A GNSS signal traveling through space will be im-

pacted by various factors. These factors will result in errors in the pseudorange ρ and

carrier phase measurements ϕ, used during the position estimation process:

ρi,fk,r = rik,r + c
(
δtk,r − δtik

)
+ T i

k,r + I ,fk,r + εi,fρ,k,r + biGD,ρ, (3.1)

ϕi,f
k,r = rik,r + c

(
δtk,r − δtik

)
+ T i

k,r − I i,fk,r + λfηi,fk,r + εi,fϕ,k,r + biGD,ϕ, (3.2)

where2

i, f, r, k are satellite, frequency, receiver and epoch indexes, respectively,

rik,r is the geometric range between satellite i and receiver r at epoch k,

c is the speed of light,

δtk,r is the receiver clock bias,

δtik is the satellite clock bias,

T i
k,r is the tropospheric delay,

I ,fk,r is the ionospheric delay,

λfηi,fk,r is the carrier phase cycle ambiguity,

εi,fk,r are the multipath (εi,fMP,k,r) and thermal noise (εi,fTN,k,r).

2more complex models exist, however this dissertation will focus on typical
model applied to COTS standard receivers.



37

biGD,ρ/ϕ are the code/carrier phase group delay impacting the measurements (where

biGD,ϕ is negligible - cf Chapter 7)

Since the ionospheric delay is frequency dependent, pseudorange and carrier

phase measurements are often combined in an iono-free (IF) combination:

ρi,IFk,r = rik,r + c
(
δtk,r − δtik

)
+ T i

k,r + εi,IFρ,k,r ++biGD,ρ, (3.3)

ϕi,IF
k,r = rik,r + c

(
δtk,r − δtik

)
+ T i

k,r + λIFηi,IFk,r + εi,IFϕ,k,r ++biGD,ϕ. (3.4)

Orbit and clock errors (i.e. residual to the clock and ephemeris products)

being the main contributor to ranging errors, these errors are addressed first.3

In the following, we develop new robust sequential models for GNSS satellite

orbit and clock errors using PSD bounding. Clock errors are analyzed per satellite

clock type: Rubidium (Rb) versus Cesium (Cs) for GPS, and Rubidium Atomic

Frequency Standard (RAFS) versus Passive Hydrogen Maser (PHM) for Galileo.

3.1 Orbit and clock errors characterization over time

In this section, we describe the databases and processes used to compute GPS

and Galileo satellite orbit and clock errors (based on the keplerian model using clock

and ephemeris products as broadcast by the GNSS signal navigation data). Orbit and

clock estimates from broadcast navigation data are compared to a reference source

(“truth”) after interpolation and coordinate transformation. In addition, we partition

the data with respect to satellite clock type. Thirty six months of data were processed

(years 2018-2020).

3.1.1 Reference orbit and clocks. Truth data is obtained from the Multi-

GNSS Experiment (MGEX) repositories accessible at [24] which provides a posteriori

3The work presented in this Chapter has been published in [23].
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Figure 3.1. Error generation diagram

so called ”final products/orbits” describing the true geometric orbits with only a

negligible residual error in the order of centimeters remaining. The MGEX service

was initiated by the International GNSS Service (IGS) to create a single GNSS data

service for multiple core constellations. MGEX is comprised of several ACs which

independently compute their own GNSS orbit and clock products. For this work, we

used precise orbit and clock data (so called final products) from two ACs: CODE

for GPS and CNES for Galileo, both available at the [24] repository, and we consider

them to be our truth reference. These reference products have an accuracy of 2.5 cen-

timeters (specified as the one-dimensional mean RMS value over the three geocentric

position components). A more detailed analysis of the consistency and accuracy of

the MGEX orbit and clock products, as well as references for the GPS and Galileo

reference files can be found in [25]. Because we are interested in accurately character-

izing orbit and clock errors (and their correlation) over time periods of a few hours (cf

Chapter 2 Section 2.2.2.1), the reference orbit’ nominal 15-minute sampling period

is insufficient. The data was therefore interpolated at 30-second intervals. For this

purpose, we used an 8th order Lagrange polynomial following the analysis in [26].



39

Clock errors are random walk processes and should not be interpolated. Instead, we

directly use the IGS reference clock products, which are provided with RMS errors

lower than 70 picoseconds at 30-second sample intervals. Note that each clock prod-

uct is aligned to their AC’s realization of the system time. This means that each

Analysis Center (AC) product will be impacted by its own clock bias. Therefore a

common clock bias for the AC product in use must be removed from all satellites.

Note however, that the data collected was not always continuous due to possible data

gaps and/or satellite errors.

3.1.2 Broadcast ephemerides. In the remainder of this work, we follow the GPS

ICD standards [27] and use the term “ephemerides” to refer to both orbit and clock

ephemerides, and more specifically the L/NAV model [28]. Broadcast ephemerides are

stored in Receiver INdependent EXchange (RINEX) formats that contain 24 hours of

navigation messages. We used Stanford University’s ‘sugl’ files [29] for GPS satellites

and ‘brdc’ from CNES [30] for Galileo. These institutions were chosen among several

others because their data cleaning and validation algorithms ensure a minimal amount

of residual file recording, storing, and labeling errors [31, 32].

3.1.3 GPS and Galileo orbit and clock errors. Satellite orbit and clock er-

rors are obtained by taking the difference between the estimates of the broadcast

ephemerides (between a user calculated satellite orbit and clock - based on the satel-

lites navigation message disseminated at that time and their respective models [27,33])

and those of the reference orbits and clocks, as shown in Figure 3.1. Reference or-

bits are provided with respect to the Center of Mass (CoM) of the satellite, whereas

broadcast ephemerides are recorded with respect to the satellite’s Antenna Phase

Center (APC). Thus, they need to be converted to the same reference point—in this

case, the reference orbits are expressed at the APC. Note that there are 2 conventions

to define the APC: the IGS convention and the satellite metadata. The convention
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for these offsets can be found at [34], [35] and [36]. More details on these offset cor-

rections can be found at [37]. After correcting for the offsets, orbit and clock errors

are obtained by differencing reference and broadcast orbit and clocks. The final er-

rors are then converted to the satellite-referenced local-level radial, along-track, and

cross-track frame. Note that each clock product is aligned to their AC’s realization

of the system time. This means that each AC product will be impacted by its own

clock bias. Therefore a common clock bias must be removed from all satellites.

The User Ranging Error (URE) is the projection of the satellite’s orbit and

clock errors for any user on earth and is the combination of three components:

ϵURE(η) = cxx(η) + cww(η) + cvv(η) (3.5)

where x, w and v are the radial-plus-clock, along track and cross track compo-

nents, respectively. The weighting factors cv and cw are described below with cx =√
1− c2w − c2v.

We consider three scenarios. Given Re the earth radius in kilometers and

RSV the satellite’s altitude in kilometers, the following limiting cases respectively

maximize the contributions of radial/clock, along track, and cross track errors to

URE as observed at user’s zenith (i.e. satellite nadir):

• Case 1: cv = cw = 0

• Case 2: cv = 0 and cw = Re

Re+RSV

• Case 3: cv =
Re

Re+RSV
and cw = 0

These cases are represented in Figure 3.2. Note that case 3 represent the cross track

equivalent of case 2.
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Figure 3.2. Projection of Radial, Along track and Cross track errors onto the user’s
line of sight.

We processed the orbit and clock errors of GPS (31 active satellites) and

Galileo (18 active satellites) over 2018, 2019 and 2020, at a 30 sec sampling rate,

which represents about 180 million data points. Figure 3.3 shows the orbit and clock

errors of the 31 GPS (grey) and 18 Galileo (black) satellites in December 2019. Orbit

and clock error time series for the entire month, for all satellites, for Case 1, are

plotted on top of each other.

Figure 3.3. Orbit and clock errors for all GPS and Galileo satellites at 30-s intervals
in December 2019

GPS ephemerides are nominally broadcast every 2 hours. When a new set of

ephemerides is received, the GPS Interface Specifications document stipulates that

the previous one is still valid [28], but most users choose to use the most recently
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received set as it is a reasonable assumption that a lower age of data will provide,

in general, a better quality product. The switch of ephemerides causes an abrupt

change in the estimated satellite positions, which can be cumbersome to model in

a KF. In response, we adopt an ephemerides switch-over method more amenable to

dynamic modelling. We interpolate the broadcast ephemerides in the position domain

over the two-hour overlap between the previous and current sets to ensure continuous

transitions at ephemerides switch-overs.

Figure 3.4. Example ephemerides interpolation (radial errors) of GPS PRN07 in
December 2018 (left), as well as its impact on radial plus clock error ACF (right)

Figure 3.4 shows an example of radial error for GPS PRN07 interpolated (grey)

versus not interpolated (red). The ephemerides jump can be observed for the non-

interpolated case at the 2-hour time tag. The process used for Galileo ephemerides

is similar, and both are further explained in Appendix A.

Although the interpolated switch-over method does produce much smoother

error transitions and is more amenable to modeling in a KF, it does not lead to error

spectral characteristics significantly different from those resulting from abrupt switch-

overs. The right part of Figure 3.4 shows the (normalized) ACF for interpolated

(grey) and not interpolated (red) orbit and clock errors of GPS PRN07. The x-axis



43

was limited here to 7 hours since it is the longest satellite pass duration (longer

correlation times will not impact the user). The choice of interpolation method has

minimal influence on the ACFs and therefore will not limit the general applicability

of the final error models.

The error models developed in the rest of this section are intended for im-

plementations where the ephemerides are interpolated. However, these error mod-

els also apply in applications where the difference between interpolated versus non-

interpolated ephemerides is negligible, even if the user does not interpolate ephemerides.

For residual error modeling in Space-Based and Ground-Based Augmentation Systems

(SBAS and GBAS) that rely on corrections of the un-interpolated ephemerides, this

methodology could be re-iterated with un-interpolated ephemerides in order to obtain

appropriate models.

3.1.4 Impact of satellite clock type on orbit and clock errors. There are

three main types of space-qualified atomic clocks used in GPS and Galileo: Rb or

RAFS, Cs, and PHM. GPS satellites have been equipped with several combinations

of clocks. GPS blocks II/IIA carried two Cs and two Rb clocks, blocks IIR and

IIR-M contained three Rb clocks, and blocks IIF carried two Rb and one Cs clocks.

Galileo satellites, on the other hand, use PHM as their primary clocks and RAFS

as secondary. Tables 3.1 and 3.2 summarize the GPS and Galileo clocks and block

numbers associated with each Pseudo Random Noise (PRN) during the time period

of the data we processed. Table 3.1 shows that most GPS satellites used a Rb clock as

their main clock. Only two GPS satellites used Cs clocks. Table 3.2 shows that most

Galileo satellites were PHM satellites and even though all of them carried RAFS, only

3 used them for the broadcast signals.

A comparison in [38] (Chapter 5) of atomic frequency standards was performed

among the GPS and Galileo constellations over timescales ranging from 1 second to 1
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day. It showed that stability could vary by as much as a factor 10 and was generally

better for the Rubidium and PHM clocks.

Figure 3.5. GPS and Galileo Orbit and Clock Errors over December 2018

We can illustrate this observation with Figure 3.5, which shows example error

time-series at 30-second intervals for each satellite clock type in March 2018, for GPS

(top-two charts) and Galileo (bottom-two charts). For GPS, the upper left and right

plots show errors for the Rb and Cs clocks on PRN01 and PRN08, respectively. The

Rb clock error oscillates within ±1 m. The Cs clock has larger error variations that

reach up to ±2 m. For Galileo, both PHM and RAFS clock errors have similar

behavior and remain between ±0.5 m. The variations in satellite clock errors are

significantly larger in GPS than in Galileo satellites.

In order to model orbit and clock errors using PSD bounding, we must first

ensure that they are stationary over the model’s duration.

3.2 Error stationarity analysis

The process described in Chapter 2 is applied in this section onto the orbit

& clock error contributors. More specifically, since orbit and clock errors have a

”slowly varying” non stationarity (see later), we apply the methodology of Chapter
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2, section 2.2.3.1. For each PRN, the orbit and clock errors of a given satellite over

36 months of data are tested for stationarity. If the dataset is deemed non-stationary,

the data is subdivided into stationary datasets. Figure 3.6 shows the statistics of

each stationary sub-dataset for 2018 only (for clarity purposes). In some cases, the

x-axis shows repeating PRNs. GPS PRN03, for example, is present four times. This

means that stationarity tests failed until the dataset was split into four different sets.

Note that stationary subsets do not overlap. Also note that due to the analysis

shown in Section 2.3.1, we understand the value of using the longest dataset possible.

Therefore, the stationarity partitioning begins with the longest dataset available (e.g.

3 years), and reduces its size by partitioning until a stationary subset has been found.

Once stationarity is asserted, the partitioned datasets are treated separately.

3.3 Robust modeling of orbit and clock errors

Unlike prior work that provided bounds on the variance of orbit and clock

errors for GPS and Galileo [39], we present an approach to modeling these errors over

time.

3.3.1 Zero Mean Assumption. This section supports the fact that the orbit and

clock errors can be assumed zero mean. Figure 3.6 shows box plots of the error data

for each satellite in the GPS (upper) and Galileo (lower) constellations. For clarity

in exposition the figure shows results limited to 2018; the rest of this work uses data

from 2018, 2019 and 2020. The x-axis indicates the satellite’s PRN number. The

color code designates the length of data used to generate the box representation as

determined using the stationarity test. The red line inside each box represents the

sample median and the upper and lower limits of the box represent the 75th and 25th

percentiles, respectively. The dotted lines reaching away from the boxes represent

the lowest and highest data points, excluding the outliers, which are represented by

colored dots. A point is considered to be an outlier if it is greater than q3+2.7σ(q3−q1)
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or smaller than q1 − 2.7σ(q3 − q1), where q1 and q3 are the 25th and 75th percentiles

of the sample data. Note that ±2.7σ corresponds to precisely 99% of the data if it is

normally distributed. For both GPS and Galileo, the boxplots appear to be consistent

with a zero-mean assumption but will be verified below. It is worth noticing that GPS

PRNs 8 and 24, the two Cesium satellites, have much larger error spreads than the

rest of the GPS satellites.

In addition, we can obtain the ensemble mean x̂ over n stationary data sets

for a given constellation.

For each stationary data set xi, we can take independent samples every 2τi,

and the estimates of the mean x̄i and variance σ2
x̄i

for the data set can respectively

be expressed as:

x̄i =
1

Ni

Ni∑
k=1

xi,k (3.6)

σ2
xi
=

1

Ni − 1

Ni∑
k=1

(xi,k − x̄i)
2 (3.7)

where Ni is the number of independent samples in stationary set xi, and xi,k is the

kth independent sample within xi. The variance of the error on the mean estimate x̄i

can be written as [15]:

σ2
x̄i
=
σ2
xi

Ni

(3.8)

The weighted least squares estimate of the ensemble mean for samples within

a constellation is then computed as:

x̂ =
1∑
i σ

−2
x̄i

∑
i

x̄i
σ2
x̄i

(3.9)

Using orbit and clock error data from 2018 to 2020 (in order to achieve a more

accurate estimation), we obtain mean estimates per constellation of x̂GPS = 1.79 cm

and x̂GAL = 0.84 cm. It is important to remember that the IGS reference files are
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provided with an accuracy of approximately 2.5 cm. Therefore, the mean estimates

(i.e. potential biases) obtained here are negligible.

These results are consistent with those independently obtained in [5], which

show that GPS and Galileo radial-plus-clock errors for individual satellites are zero

mean over one year. Therefore, we model orbit and clock error as a zero-mean process.

It is worth pointing out that we do not assert that the errors are zero mean over

the duration of a satellite pass at a given location. Oftentimes they are not, because

their correlation time is typically of length similar to that of the longest satellite pass.

It is the underlying parent process that is zero mean. This is a necessary condition

for evaluating PSDs in the next subsection.

3.3.2 Power Spectral Density Bounding. We implement the PSD estimation

algorithm described in Chapter 2, Section 2.2.2.1. Because the maximum satellite

pass length is in the order of 7h, no user will ever experience orbit and clock error

correlations longer than that duration. Hence, the tapering window described in this

section is applied to the errors’ ACFs with windowing parameters of 7 and 22 hours,

respectively, for T1 and T2. A sensitivity analysis on these two parameters is provided

in Appendix C. This sensitivity revealed that T2 values between 14 and 48 hours

produce the least spectral leakage. Since the goal is to obtain a bounding FOGMRP

model (with parameters σx and τx) that is as small as possible, an additional analysis

was performed to optimize the set of parameters T2, σx, and τx. This analysis can be

found in Appendix H and concluded that T2 = 22 hours was optimal for orbit and

clock errors.

The left hand-side plot in Figure 3.7 shows the estimated orbit and clock error

PSD curves for GPS satellites over the years 2018 to 2020 and for each of the three

line-of-sight limit cases selected in Section 3.1.3. The Cs satellites are represented
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(a) (b)

Figure 3.7. PSDs of radial-plus-clock errors for: (a) GPS (b) Galileo

with blue curves and the Rb satellites with green ones. The two clock types can

again be clearly distinguished, with Cs curves above the others. The fact that Rb

clock curves are lower means that the standard deviation of their errors is also lower,

which matches our previous observations and those in [5].

The right hand-side plot in Figure 3.7 shows the same curves for Galileo satel-

lites. As observed before, no clear distinction can be seen between the PHM and the

RAFS Galileo satellites.

To robustly model the dynamics of orbit and clock errors (denoted ϵorb) over

time, we upper-bound their PSD using a FOGMRPmodel. We chose a FOGMRP that

is fully determined by two parameters, a time constant τorb and a standard deviation

σorb, because it can easily be incorporated in a KF, e.g., by state augmentation. Its

PSD can be expressed as [17]:

S(f) =
2σ2

orb/τorb
1/τ 2orb + 4π2f 2

(3.10)
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Since the two GPS clock types clearly show different trends in the frequency domain,

the user may implement different bounding models for each. Figure 3.8 (a) shows the

PSD curves for the Rb satellites and its FOGMRP bound. Figure 3.8 (c) shows the

same for the Cs satellites. Figures 3.8 (b) and (d) respectively show the bounds for the

Galileo satellites RAFS and PHM. If future ARAIM ISM do not identify clock types

by satellite, users could access this information via Notice Advisory to NAVSTAR

Users (NANU). However, we only processed data for two GPS Cs and three Galileo

RAFS satellites. The bounds for satellites with these two clock types could benefit

from validation using more data, either from more satellites or over a longer duration.

(a) (b)

(c) (d)

Figure 3.8. PSD bounding of: (a) GPS Rb (b) GAL RAFS (c) GPS Cs (d) GAL
PHM
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3.3.3 Summary of the Error Model. Table 3.3 summarizes the parameters

of the PSD-bounding FOGMRP models. For the GPS constellation, the PSDs of

orbit and clock errors were bounded using τGPS = 5.8 hours and σGPS = 1.55 meters.

Galileo errors were bounded using τGAL = 3 hours and σGAL = 0.7 meters. For

simplicity, those parameters will be referred to as σorb and τorb: ϵorb ∼ FOGMRP

( σorb, τorb).

Table 3.3. PSD bounding summary: FOGMRP parameters

τorb [h] σorb [m]
GPS Rb 6.4 1.35
GPS Cs 5.8 1.55
GPS All 5.8 1.55

GAL RAFS 3 0.65
GAL PHM 3 0.7
GAL All 3 0.7

The dynamics of the FOGMRP error model, with parameters σorb & τorb, are

expressed in discrete form as:

xk+1 = e−∆t/τorbxk +
√
σ2
orb (1− e−2∆t/τorb)ωk, (3.11)

ωk ∼ N(0, 1) and x0 ∼ N
(
0, σ2

0orb

)
where σ2

0orb
is the initial variance of the process.

This model’s dynamic equation will be used in Chapter 7, to incorporate the

error models in a KF through state augmentation [40].
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CHAPTER 4

TROPOSPHERIC DELAY MODELING

Atmospheric errors constitute a major source of ranging error in GNSS. When

a GNSS signal travels through the atmosphere, it is delayed and refracted. Ionospheric

errors can be removed using dual-frequency signals. However, tropospheric errors are

not frequency-dependent and cannot be removed in the same way. The tropospheric

contribution to range error in the zenith direction is on the order of 2.4 m. It is

made up of “dry” and “wet” components. The dry component is caused by dry gases

present in the troposphere, and its magnitude varies with local temperature and

pressure. These variations are predictable to a large extent and can, therefore, be

modeled accurately. The wet component of the tropospheric delay is caused by water

vapor and condensed water, which depends on weather conditions and is therefore

less predictable.

In current implementations of GNSS Space-Based and Aircraft-Based Aug-

mentation Systems (SBAS and ABAS) [1, 41–43], the dry and wet components of

the zenith tropospheric delay are modeled as functions of the day of the year (to

account for seasonal variations) and latitude of the user (to account for geographic

variations). The estimated zenith delay is then individually scaled for each satellite

by an elevation-dependent mapping function (i.e., obliquity factor). The standard

deviation of the residual range error contribution in the zenith direction is specified

to be no larger than 0.12 m (as specified by the MOPS algorithm currently in use in

SBAS and ABAS [1,42,43]).

The literature on high-integrity tropospheric error time correlated models is

sparse. The Wide Area Augmentation System (WAAS) MOPS [1] suggests that the
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correlation of the tropospheric delay over time be modeled as a FOGMRP with a

30-minute time constant. However, no reference is provided to justify this choice of

time constant and no guarantees are provided with regard to integrity. Huang, et

al. [44] studied the spatial correlation of the tropospheric error over a 5 km baseline.

The work is applicable to differential GNSS systems, but not to inertial navigation or

sequential ARAIM. Ibrahim and El-Rabbany analyzed tropospheric residuals relative

to the National Oceanic and Atmospheric Administration (NOAA) model using 10

stations in North America [45]. Using a least-squares approach, they estimated the

best fit covariance function to the sample autocovariance function of the residuals and

developed four different covariance models. These models capture the time correlation

of the tropospheric residuals, but they are not designed for high-integrity applications,

are limited to North America, and are restricted to complement the NOAA model

only.

In response, in this chapter, we develop new, robust models for the tropo-

spheric residuals using data from a worldwide network of ground stations, using

the methodology derived in Chapter 2, Section 2.2.3.1. We consider two mod-

els: the WAAS/RAIM MOPS tropospheric error model (that will be referred to

as “MOPS”) [1], because it is the one that is currently used in GNSS applications of

interest (ARAIM and GNSS/INS), and the empirically derived “GPT2w” model [46],

because it was initially developed for geodesy applications and is purportedly very

accurate.4

4.1 Evaluation of tropospheric models

The following sections describe the steps involved in determining the residual

errors after application of each of the two tropospheric models.

4The work presented in this Chapter has been published in [16].
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4.1.1 IGS tropospheric measurements. To obtain the tropospheric residuals,

precise tropospheric delay estimates were collected from a set of IGS stations. IGS is

an organization of over 200 self-funded agencies, universities and research institutions

that provide high precision GPS satellite orbit and clock estimates using a worldwide

network of reference stations. These estimates are, in turn, used to develop precise

tropospheric products [47], available daily at regular 5-minute intervals and with a

1-sigma accuracy of 4 mm. The product files contain estimates of the tropospheric

Zenith Path Delay (ZPD) at each station. We use these ZPDs to compute residuals

for the MOPS and GPT2w tropospheric models.

4.1.2 Reference station selection.

Figure 4.1. Selection of the 100 IGS stations considered in this dissertation

Because tropospheric delay varies with reference station location, the number

and distribution of worldwide stations considered in this work are important param-

eters. If we choose too few stations, then regional variations of the troposphere are

not accounted for. But, if we consider too many stations, the data processing time

becomes prohibitive. With this tradeoff in mind, we selected 100 stations worldwide.
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Their locations are represented in Figure 4.1. The impact of the tropospheric delay

on a GNSS signal depends on the day of the year, the receiver’s location and the

satellite’s elevation. The errors studied in this work are evaluated over 1 year (2018),

at these 100 locations.

4.1.3 MOPS zenith tropospheric delay residuals. The total tropospheric

Zenith Tropospheric Delay (ZTD) estimate and its error standard deviation are pro-

vided at 5-min time intervals in the IGS tropospheric files. We consider these delay

values to be the “true” tropospheric delay. We first analyze residual errors obtained

using the MOPS model, computed as:

ϵMOPS = TMOPS − TIGS (4.1)

where:

TIGS is the total tropospheric zenith path delay from IGS, and

TMOPS is the MOPS model estimated zenith path delay.

To compute TMOPS, the user takes as input the day of the year and the user’s latitude.

These are used to obtain estimates of various meteorological parameters (via look-up

tables), which are then used to estimate the dry and wet tropospheric delays. More

details on these computations can be found in [1].

We collected data spanning from January 1 to December 31, 2018 at 5-minute

intervals for each of the 100 IGS stations displayed in Figure 4.1. This represents

a total of approximately 10.5 million data points. The analysis is carried out for

zenith tropospheric delay because they are the random part of the total slant delays

perceived by receivers. Slant delays impacting GNSS signals are discussed at the end

of this chapter.

Table 4.1 (columns 1 – 4) shows the results obtained for 35 of the 100 stations.

High negative latitude stations (e.g. DAV1, CAS1, and PALM) exhibit the largest
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Table 4.1. Statistics of MOPS (columns 4-5) and GPT2w (columns 6-7) tropospheric
residuals for 35 out of the 100 reference stations over year 2018

STAT. LAT. [°] LON. [°] µM [m] σM [m] µG [m] σG [m]

LCK4 26.9 80.9 -0.047 0.122 -0.006 0.048

STK2 43.5 141.8 -0.022 0.080 0.009 0.041

CEDU -31.9 133.8 -0.076 0.044 0.006 0.040

DAV1 -68.6 78 -0.111 0.022 0.001 0.020

DGAR -7.3 72.4 0.007 0.047 0.015 0.043

KOKV 22.1 -159.7 -0.019 0.046 0.007 0.044

PALM -64.8 -64.1 -0.096 0.029 -0.004 0.030

YKRO 6.9 -5.2 -0.027 0.062 -0.009 0.051

MAJU 7.1 171.4 0.064 0.048 0.022 0.045

UFPR -25.4 -49.2 0.014 0.058 0.007 0.050

NRIL 69.4 88.4 -0.027 0.044 0.003 0.030

LAMA 53.9 20.7 0.005 0.053 0.004 0.033

CAS1 -66.3 110.5 -0.125 0.027 -2x10-4 0.025

SASK 52.2 -106.4 -0.021 0.043 -0.003 0.023

REUN -21.2 55.6 -0.021 0.048 -8x10-4 0.038

PIE1 34.3 -108.1 -0.003 0.044 -3x10-4 0.024

ZAMB -15.4 28.3 -0.021 0.061 -0.008 0.036

LAUT -17.6 177.4 0.021 0.075 -0.003 0.066

LMMF 14.6 -109.3 -0.036 0.048 0.009 0.043

WHIT 60.7 -135.2 -0.001 0.037 0.003 0.022

BAKE 64.3 -96.0 -0.054 0.037 -0.008 0.027

IGAL 63.7 -68.5 -0.054 0.036 -0.010 0.029

RDSD 18.5 -69.9 -0.013 0.047 0.002 0.040

FAA1 -17.5 -149.6 0.004 0.056 0.003 0.045

AREQ -16.5 -71.5 -0.008 0.033 3.3e-05 0.025

MTV1 -34.9 -56.2 -0.048 0.054 -0.004 0.053

SALU -2.6 -44.2 0.018 0.046 0.010 0.031

POVE -8.7 -63.9 0.052 0.057 0.003 0.035

RGDG -53.8 -67.7 -0.066 0.033 -0.002 0.032

QAQ1 60.7 -46.0 -0.044 0.045 -0.015 0.034

DAKR 14.7 -17.4 -0.091 0.036 -0.009 0.045

WTZA 49.1 12.9 0.018 0.050 0.001 0.031

TROL 69.7 18.9 -0.004 0.048 0.004 0.035

RIGA 56.9 24.1 -7.1e-4 0.038 0.006 0.030

ADIS 9.0 38.8 0.017 0.033 0.002 0.025
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Figure 4.2. MOPS tropospheric residual statistics at 100 reference stations over year
2018

mean error magnitudes, while stations located at low latitude (e.g. DGAR, YKRO,

MAJU and SALU) have the smallest means. The error standard deviations remain

relatively small at all latitudes.

Figure 4.2 shows yearly mean values and standard deviations in the form

of error bars. The tropospheric residuals for the 100 stations over year 2018 were

arranged in 10 deg latitude bins. The mean and standard deviation of the binned

residuals are represented in the figure. In addition, the number on top of the error bar

indicates how many stations were included in each bin. Clearly, there is a latitude

dependent bias impacting the MOPS residuals. Residuals for stations located at

extreme latitudes have yearly biases reaching about -13 cm, whereas biases at stations

between -30 and +30 deg latitude range between -6 and 0.5 centimeters. The MOPS

model does not perform as well near the poles as it does near the equator.

Weather - humidity in particular - is also expected to have a large impact

on the unpredictability of tropospheric errors. Figure 4.3 (left) shows tropospheric

residuals at the KOKV station, which is located in the southeast of Hawaii. In August

2018, Hurricane Lane moved across the Hawaiian Islands and reached Category 5 on

August 22 (i.e. Day of Year (DoY) 234). This was the wettest tropical cyclone
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Figure 4.3. Impact of a storm (left) and the rainy season (right) on MOPS tropo-
spheric residuals

on record in Hawaii with rainfall accumulations of up to 1,500 mm. It remained a

Category 5 hurricane for 5 days before being downgraded to a tropical depression on

August 28 (DoY 240) and dissipating in the following day.

The upper plot in Figure 4.3 (left) represents the tropospheric residuals at

KOKV between June 20 and 30, 2018. June was the driest month of the year at

this location and is used here as a reference for “nominal” tropospheric conditions.

The lower plot in Figure 4.3 (left) shows residuals from August 21 to 31, 2018, at

the peak of Hurricane Lane’s activity. On DoY 234, the first day of the hurricane,

the residuals mean shifts from -0.05 m to 0.05 m and stays around this value for the

entire duration of the storm. When the storm ends on DoY 241, the residuals return

to their initial mean of -0.05 m.

We note that extreme hurricanes as described above are rare and do not rep-

resent a large portion of weather events that an aircraft may encounter. However, an

aircraft may fly over regions that are impacted by rainy seasons.

Figure 4.3 (right) represents the tropospheric residuals of station LCK4 located

in the northeast part of India. This area is known for its intense rainy (monsoon)
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seasons. In this figure, the upper plot represents the tropospheric residuals during

the month of January 2018 (driest month of 2018) and the lower plot represents

those same residuals during the months of July, August and September 2018 (wettest

months of 2018).

In contrast with the previous location (KOKV), where abrupt changes in

weather conditions were observed, LCK4 is located in an area that experiences slowly

changing weather conditions. Note that the month of September is the end of the

rainy season. This is consistent with the fact that, while the upper plot (dry season)

shows constant residuals of -0.13 m, the lower plot varies (positive bias throughout

the monsoon season), but slowly converges towards -0.13 m at the end of September.

The MOPS model does not take such monthly variations into account, even though

they appear and dissipate gradually and are predicable.

Figure 4.2 shows that the MOPS model produces zenith tropospheric residuals

that are negatively biased by up to 13 cm at high latitudes. An elevation-dependent

mapping function can be used to evaluate the slant delay experienced by a GNSS

signal reaching an antenna at elevation angles lower than 90 deg.

The MOPS mapping function is expressed as [1]:

m(θik) =
1.001√

0.002001 + sin2(θik)
(4.2)

where θik is the elevation angle of satellite i at epoch k.

The elevation mapping function takes values ranging from 1 for a satellite at

zenith to about 10 for a low elevation satellite. Thus, using the MOPS model, a

low elevation satellite signal (i.e., with a mapping function of 10) at a high-latitude

location (i.e., observing biases of up to 13 cm) could be impacted by a 1.3-meter bias.

Biases this large may become unacceptable for aircraft navigation, especially during
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final phases of flight. In the next section, we analyze the tropospheric residual errors

using the more accurate GPT2w model.

4.1.4 GPT2w zenith tropospheric delay residuals. The GPT2w blind model

is an empirical model of tropospheric delay developed in [46]. The term “blind” refers

to the fact that no real time meteorological inputs are required. In this model, the wet

delay is computed using predetermined estimates of water vapor pressure, weighted

mean temperature, and water vapor decrease factor. In our case, these values were

provided in the form of a 1 deg by 1 deg latitude-longitude grid. This grid is used

to calculate pressure, temperature, temperature lapse rate, mean temperature of the

water vapor, water vapor pressure, hydrostatic and wet mapping function coefficients,

water vapor decrease factor, and geoid undulation for specific sites near the Earth

surface. Using these parameters, the zenith hydrostatic delay is calculated using the

refined Saastomoinen equation from [48] and the zenith wet delay is calculated using

the method in [46].

Finally, VMF1 is used with the hydrostatic and wet mapping function coef-

ficients provided with the GPT2w model. Note that contrary to work done in [49],

the GPT2w model used here is a dynamic model, which uses the day of the year

information to estimate more accurately annual and semi-annual variations in the

tropospheric delay’s amplitudes.

Unlike the MOPS model, which only takes the user latitude into consideration,

the GPT2w model is a multi-dimensional grid tropospheric delay model using both

latitude and longitude.

Using a similar approach to the previous section, the GPT2w zenith tropo-

spheric residuals are computed as:

ϵGPT2w = TGPT2w − TIGS (4.3)
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where:

TIGS is the total tropospheric zenith path delay from IGS, and

TGPT2w is the GPT2w model estimated zenith path delay.

Residuals were generated for year 2018 using IGS data at a sampling period of 5

minutes for all 100 stations.

Figure 4.4. GPT2w tropospheric residual statistics at 100 reference stations over year
2018

Figure 4.4 displays the mean values and standard deviations of the GPT2w

tropospheric residuals for latitude bins ranging from -70 to 70 deg. The numbers

located above the error bars represent the number of stations used to compute the

associated bar plot. In comparison to Figure 4.2, the mean values in Figure 4.4 are

much lower, on the order of a few millimeters. The standard deviations are also

smaller than for the MOPS residuals. It is clear from these results that the GPT2w

model globally performs better than the MOPS model.

Columns 5 and 6 of Table 4.1 provides values for the mean and standard

deviation of the GPT2w residuals at 35 out of the 100 individual stations. In this

case, the stations with the lowest mean values are stations CAS1 (Antarctica) and

PIE1 (USA), whereas the largest biases are observed at stations DGAR (Diego Garcia
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Islands) and MAJU (Marshall Islands). The mean values of the residuals do not vary

significantly with receiver latitude.

Figure 4.5. Impact of a storm (left) and the rainy season (right) on GPT2w tropo-
spheric residuals

Figure 4.5 (left) shows the tropospheric residuals of station KOKV in June

(nominal conditions) and August 2018 (stormy conditions). Mean residual values are

close to zero during nominal conditions. Similar to the MOPS residuals in August

2018, the GPT2w residuals change abruptly on DoY 234 (when the storm begins) and

move back to normal on DoY 241 (end of the storm). This observation confirms that

neither MOPS nor GPT2w can accurately model the tropospheric delay’s behavior

during an unexpected storm. Figure 4.5 (left) is almost identical to Figure 4.3 (left).

Figure 4.5 (right) represents the tropospheric residuals at station LCK4, lo-

cated in India. A storm that appears to have happened during DoY 260-265 is still

not accurately captured by the GPT2w model. However, between DoY 200 and 260,

MOPS tropospheric residuals in Figure 4.3 (right) were shifted by 26 cm from their

nominal value because of the monsoon season impacting the troposphere. This shift

is corrected by the GPT2w model in Figure 4.5 (right). Indeed, the GPT2w residuals

are close to zero during that period.

Figure 4.6 summarizes the error statistics comparison between the MOPS and
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Figure 4.6. Tropospheric models statistics summary

GPT2w models. Yearly means show a clear improvement (especially at high lat-

itudes), and yearly standard deviations of the residuals are slightly improved for

GPT2w as compared to the MOPS model, most likely because the GPT2w model

accounts for annual and semi-annual variations such as monsoon seasons.

4.1.5 Advantages and drawbacks of each model. The tropospheric model

described in the MOPS is derived from the UNB3 model [50]. The UNB3 model is a

tropospheric delay model for use in aircraft and does not require estimated meteoro-

logical parameters to be input in real-time. Instead, the UNB3 model relies on a 1D

latitude-dependent lookup table. One of the main advantages of the MOPS model as

compared to the GPT2w model is that it requires low computational power. Because

GPT2w requires a search over a 1 deg by 1 deg grid to estimate pressure, temper-

ature, and water vapor information, it performs better but is more computationally

expensive.

While the left figures of Figures 4.3 and 4.5 show that sharp changes in air

humidity adversely impact tropospheric residuals for both models, overall, the GPT2w

model performs much better than the MOPS model. Further analysis of the data



66

shows that the decimeter-level MOPS zenith residual biases are constant over time,

but are location dependent. Thus, modeling MOPS residuals over time will require

that both the bias and the random part of the error be accounted for, e.g., using

a bias plus FOGMRP model. An alternative solution (chosen in this work) would

be to calibrate the MOPS model biases, e.g., using a new lookup table. Or, if the

computational burden is acceptable, the GPT2w model may be directly implemented.

GPT2w residuals have biases on the order of millimeters and standard deviations on

the order of centimeters.

In the remainder of this chapter, both MOPS and GPT2w residuals will be

modeled.

4.2 Robust modeling of tropospheric residuals

In order to model the MOPS and GPT2w tropospheric residuals over time,

several approaches exist. For example, in [51], ACFs were upper and lower bounded.

Unfortunately, time-sequential estimation using ACF bounds requires storage of mea-

surement to state coefficients over time, which quickly becomes memory prohibitive

in a GNSS/INS KF implementation [10, 18]. In this chapter we will investigate the

alternative approach described in Chapter 2 Section 2.2.3.1, based on partitioning

and upper bounding of the residuals’ PSD functions.

4.2.1 Stationarity analysis. The models considered are based on stationary

FOGMRPs because they are compact parametric realizations that can easily be in-

corporated in linear estimators, e.g., by state-augmentation in a Kalman filter. Thus,

one must first ensure that the data used to find the models parameters is stationary.

Various approaches can be implemented to check for stationarity. Here we use the

Levene test [21] and the two-sample Kolmogorov-Smirnov test [22].

In Appendix D, we show that two samples of a FOGMRP with time constant
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Figure 4.7. Separating data into stationary segments

τx can be considered independent if they are separated by a period larger than or equal

to 2τx. While the sample data processes are obviously not known to be FOGMRP

a-priori, we use this as reasonable approximation (which the data will actually verify

later) to determine the effective number of independent samples. Therefore, to test

stationarity, the data was sampled at regular 2τx intervals.

For all but six reference stations in Figure 4.1, one year of data was deemed

stationarity based on the results comparing 2018 and 2019 data. For GPT2w, residu-

als from stations STK2 – Japan, MAJU – Marshall Islands, ADIS – Ethiopia, BADG

– Russia, CUT0 – Australia, and FUNC - Portugal, were non-stationary over the en-

tire year (2018). Figure 4.7 represents the GPT2w residuals for two of those stations.

We can see clear changes of behavior between the winter and summer periods. The

summer period was defined for DoYs between 117 and 300 (April 27th to October

27th). For station STK2, a larger standard deviation of the residual can be observed

during the summer days. For station MAJU however, the opposite observation can

be made. We therefore divided those datasets accordingly and tested winter/sum-
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mer sets for stationarity. These tests came back positive. A similar approach was

performed for the six non-stationary stations of the MOPS residuals.

4.2.2 Residual mean modeling. The PSD estimation of a random process relies

on the assumption that this process is zero mean. In this chapter, we determine

whether or not the MOPS and GPT2w residuals must be modeled with a bias.

4.2.2.1 Case 1: MOPS tropospheric residuals. Figure 4.8 shows box plots

of the error data for each of the 100 stations studied over the 106 stationary periods.

The x-axis represents the station’s name. In the boxplot figure, the middle line

represents the sample median and the upper and lower limits of the box represent the

75th and 25th percentiles, respectively. The vertical lines reaching away from the box

represent the lowest/largest data point excluding the outliers, which are represented

by red dots. A point is considered to be an outlier if and only if it is greater than

q3+2.7σ(q3− q1) or smaller than q1− 2.7σ(q3− q1), where q1 and q3 are the 25th and

75th percentiles of the sample data. The MOPS residuals are clearly not zero mean

(as already seen in the previous section, and confirmed in these boxplots), and will

need to be modeled as the sum of a bias and a random process.

To model the bias, two approaches are possible. The simplest method would

be to use the maximum bias observed over all the stations. Another approach would

be to create a latitude/longitude-based model. In this work, we will use the first

approach. Station CAS1, located in Antarctica, presented the largest bias, with -

0.125 m. This mean will therefore be used to model the bias of the MOPS residuals.

4.2.2.2 Case 2: GPT2w tropospheric residuals. This sub-section aims at

providing further evidence, supporting the results in Table 4.1, that the GPT2w

residuals can be assumed zero mean. The results in Figure 4.8 validate the zero-mean

assumption on the GPT2w residuals because median values are at the centimeter
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level, orders of magnitude lower than positioning performance requirements used in

air navigation applications.

For the remainder of the development—i.e., the modeling of error dynam-

ics—the residual sample means will be removed prior to error modeling.

4.2.3 Frequency domain modeling: PSD bounding. In this section, we will

find a FOGMRP that upper bounds the PSD estimates of the tropospheric residuals.

Figure 4.9. PSD bounding of MOPS (left) and GPT2w (right) residuals

Figure 4.10. MOPS (left) and GPT2w (right) residuals ECDF bounding

To estimate PSDs, multiple approaches exist. We will do so by simply taking

Fourier Transforms of the ACFs, multiplied by a tapering window (see Chapter 2,
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Section 2.2.2.1). Because the longest flight duration on record is about 18 hours, an

aircraft can potentially have to deal with tropospheric error correlation of up to 18

hours. Therefore, we will choose to use a window with T1=18 hours (i.e., the ACF is

not modified for lags smaller than 18 hours). To avoid spectral leakage, we optimize

the tapering window and use T2=54 hours.

Since the MOPS residuals are clearly not zero mean they need to be modeled

as the sum of a bias and a FOGMRP.

In Figure 4.9, the grey curves represent the PSDs of the MOPS (left) and

GPT2w (right) tropospheric residuals at each of the 100 stations. The model curves

that most tightly bound the MOPS and the GPT2w tropospheric residuals (especially

at low frequencies) is a FOGMRP expressed as:

Sx(f) =
2

τT

σ2
T

(2π)2 + 1
τ2T

(4.4)

with a standard deviation of σT = 13 cm and a time constant τT = 27 hours for the

MOPS model, and a standard deviation of σT = 9 cm and a time constant τT = 20

hours for the GPT2w model.

Figure 4.11. Summary table on FOGMRP and Gaussian over-bounding (OB)
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Figure 4.10 shows the empirical CDFs of residual zenith delay error for of the

100 stations (grey dots). For each of the models, the CDF overbound means have

been set to the maximum means observed over each of their respective datasets. For

MOPS, as mentioned in chapter IV.B case 1, the overbound mean is 12.53 cm. For

the GPT2w residuals, that mean is 3.7 cm. The distributions are not Gaussian, but

they can all be upper bounded by a Gaussian CDF with standard deviation of 6 and

5.5 cm (red curve), for MOPS and GPT2w respectively. Thus σT = 20 and 9 cm

values obtained to bound the PSDs are also clearly sufficient to over-bound for the

non-Gaussian errors contributions as well. These results, along with the FOGMRP

bounding results are summarized in Table 4.11.

4.2.4 Summary of the error model. In the rest of this work, we choose to rely

on the GPT2w model. Let us express the slant tropospheric delay in terms of its

hydrostatic (dry, noted TD,k) and non-hydrostatic (wet, noted TW,k) components:

Tk = TW,k + TD,k (4.5)

The slant delays can be related to the vertical delays (i.e. ZTD) via a dry and

a wet deterministic mapping functions. In this work, the VMF1 mapping functions

mWk
and mDk

for the wet and dry ZTD components (TZTD
W,k and TZTD

D,k ) are used [46]:

Tk = TZTD
W,k mWk

(θik) + TZTD
D,k mDk

(θik) (4.6)

The GPT2wmodel estimates the wet and dry ZTD separately (noted TZTD
W,GPT2w,k

and TZTD
D,GPT2w,k), with residual errors noted δTZTD

W,GPT2w,k and δTZTD
D,GPT2w,k:

Tk =
(
TZTD
W,GPT2w,k + δTZTD

W,GPT2w,k

)
mWk

(θik) +
(
TZTD
D,GPT2w,k + δTZTD

D,GPT2w,k

)
mDk

(θik)

(4.7)
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In this Chapter and in prior work [16], we modeled the post-GPT2w-model

residuals without distinction between the wet and dry components. Since the wet

component varies faster and more randomly than the hydrostatic component, it is safe

to assume that most of the residuals estimated here are wet residuals. Therefore, in

the following, the tropospheric delay will be assumed to have the following expression:

Tk =
(
TZTD
W,GPT2w,k + ϵT,k

)
mWk

(θik) + TZTD
D,GPT2w,kmDk

(θik)

= TGPT2w,k + ϵT,kmWk
(θik)

(4.8)

TZTD
W,GPT2w,k is the total vertical tropospheric delay estimated by the GPT2w model.

The FOGMRP used to upper bound the zenith delay residuals of the wet tropospheric

residuals ϵT (with parameters σT and τT shown in Figure 4.11) follows the discrete

dynamic equation:

xk+1 = e−∆t/τTxk +
√
σ2
T (1− e−2∆t/τT )ωk, (4.9)

ωk ∼ N(0, 1) and x0 ∼ N
(
0, σ2

0T

)
where σ2

0T
is the initial variance of the process.

This model’s dynamic equation will be used in Chapter 7, to incorporate the

error models in a KF through state augmentation [40].
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CHAPTER 5

CARRIER PHASE MULTIPATH MODELING

In recent years, multiple papers have been published on the development of

bounding error models for aircraft multipath. Considerable advances from both the

U.S. side (FAA, Boeing) and the EU side (European Commission, DLR, Airbus) have

been made in characterizing and bounding aircraft multipath for the iono-free com-

binations of both GPS (L1/L5) and Galileo (E1/E5a) measurements [52, 53]. These

analyses were performed over multiple hours of flight and with various antennas, air-

craft structures and receiver parameters. But all this prior work was focused on the

characterization of code or carrier-smoothed-code measurement multipath, and none

of it accounted for the time correlation of the multipath errors. Code and carrier-

smoothed code measurements are strongly impacted by antenna group delays (bGD,ρ

and bGD,ϕ). These delays are deterministic processes: the errors will change accord-

ing to the antenna’s environment, as well as substantial platform reorientations (e.g.,

turns, banks) and satellite line of sight variation. In principle, this effect is cali-

bratable, albeit not always easily for many platforms of interest, like civil transport

aircraft. Although much the same can be said for multipath, in this case error dy-

namics are highly sensitive to small scale attitude motions and further complicated

by a multiplicity of reflective surfaces on platforms with complex shapes, again like

transport aircraft, making multipath far more amenable to stochastic modelling. We

focus on raw carrier phase measurements because, apart from small, correctable an-

tenna phase center offsets, their platform/antenna dependent errors are restricted to

multipath and thermal noise, which can be modelled stochastically in a KF. This

chapter describes the methodology employed to first characterize, and then model

carrier phase multipath.
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Various approaches have been developed historically to characterize multipath.

A very well known method is the Double Difference (DD) method which consists in

differencing carrier phase measurements from two satellites in view, and then from

two antennas on the ground. Let us take a moment to look into the DD method and

recall Equation 5.1 for the raw carrier phase measurements from satellite i at epoch

k received by receiver r on frequency f :

ϕi,f
k,r = rik,r + c

(
δtk,r − δtik

)
+ T i

k,r − I i,fk,r + λfηi,fk,r + εi,fϕ,k,r, (5.1)

Suppose receivers r and u are located in close proximity to one another. Because of

their spatial proximity on earth, both receivers will experience similar atmospheric

errors (ionospheric and tropospheric delays). The single difference of carrier phase

measurements for satellite i between these two receivers will remove these atmospheric

errors as well as the satellite clock bias (which will be common at any two receivers)

to produce the following measurement:

ϕi,f
k,r−u = ϕi,f

k,r − ϕi,f
k,u (5.2)

= rik,r−u + cδtk,r−u + λfηi,fk,r−u + εi,fϕ,k,r−u,

where the subscript r − u represents the difference of terms from each receiver (e.g.,

rik,r−u = rik,r−rik,u). The remaining receiver clock terms can be removed by performing

a second difference operation, this time between two different satellites in view i and

j:

ϕi−j,f
k,r−u − ϕj,f

k,r−u = ϕi,f
k,r−u − ϕj,f

k,r−u (5.3)

= ri−j
k,r−u + λfηi−j,f

k,r−u + εi,fϕ,k,r−u.

If the relative position vector between the two receivers is known, the range term

ri−j
k,r−u can be estimated by projecting the vector onto the line-of-sight unit vector to

satellite i, and then removed. The cycle ambiguity term ηi−j,f
k,r−u is constant and can
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be removed by subtracting off the mean of the residuals obtained over long periods

of continuous tracking.

The DD method has isolated a residual carrier multipath component εi,fϕ,k,r−u

(i.e. the multipath residual in the difference between two receivers and two satellites).

For certain applications, for example ones that use double differenced measurements

directly for relative positioning, this type of multipath characterization can be suffi-

cient. However, in safety critical applications such as aviation, the multipath error

must be characterized for an individual antenna. An airplane may (for redundancy)

carry multiple antennas mounted in proximity on top of the fuselage, but they will per-

ceive relatively similar multipath errors, so differencing between them would remove

common multipath contributions that are experienced by the individual antennas. In

other words, a model based on DD errors presents the risk of not accounting for non

negligible contributions to multipath. Therefore, in the remainder of this work, we

develop a new method to characterize carrier phase multipath using a dual frequency

measurement combination with a single antenna.

5.1 Dual frequency multipath characterization

Let us consider carrier phase measurements from satellite i to receiver r, at

epoch k over two frequencies f1 and f2 (e.g. GPS L1/L2 and Galileo E1/E5a). Their

difference will yield the following residuals:

ϕi,f1
k,r − ϕi,f2

k,r =
(
I i,f2k,r − I i,f1k,r

)
+
(
λf1ηi,f1k,r − λf2ηi,f2k,r

)
+ εi,f1−f2

ϕ,k,r (5.4)

= −I i,f1−f2
k,r +

(
λf1 − λf2

)
ηi,f1−f2
k,r + εi,f1−f2

ϕ,k,r .

To see multipath error, one has to extract the term εi,f1−f2
ϕ,k,r from the residuals of

Equation 5.4. Since cycles ambiguities are constant over the course of a satellite pass

(assuming the receiver did not lose lock), they are easily removable (i.e. removing the

residual mean). The residual ionospheric delay, however, is more tricky and requires
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further investigation.

5.2 Ionospheric delay filtering

To separate the ionospheric term I i,f1−f2
k,r , which varies slowly but has large

magnitude, from the multipath term ηi,f1−f2
k,r , which has faster variations but small

magnitude, in Equation 5.4, we apply a high pass filter to the residuals, with cut

off frequency fc. The choice of fc will be paramount to the proper removal of the

ionospheric delay from the residuals of Equation 5.4, as well as the quality of the

resulting ‘multipath’ observations we obtain after the filtering operation. If fc is too

small compared to the true frequency content of the ionosphere, we take the risk of

not removing all of the ionospheric delay and having it impact our final multipath

error model, making it too conservative. If fc is too high, however, we risk removing

some of the multipath error we are trying to model, therefore resulting in a model

that is not conservative, and may not be bounding either.

Figure 5.1. Multipath environment of the Rettaliata Engineering building’s rooftop

The first step in our identification of fc is to isolate ionospheric delay for the

location of interest of our data. Throughout this section, results obtained from data

collected on the rooftop of the Rettaliata Engineering Building will be shown as a

practical application to the methodology developed here. The environment is shown
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in Figure 5.1. We obtained a 7-days-long data set collected with our east antenna,

under static conditions. Ultimately, the model derived using this data will be used in

later chapters, when the KF is run with data from this same environment. However,

the methodology developed here is applicable to aircraft flight data as well.

(a) (b)

Figure 5.2. Sidereal day differences of L1 − L2 residuals (a), and their PSD estimate
for PRN 07 (b)

To assess the ideal cut off frequency fc of the ionospheric delay, we need to

isolate it from Equation 5.4. To do that, note the difference in periodicity of the

two processes present: the multipath (for the static receiver used in this analysis)

is repeatable over 1 sidereal day (i.e., the period of the GPS constellation geometry

relative to the Earth), which is not the case for the ionospheric delay. To isolate

the ionospheric delay, the 7-day data set is divided into sidereal days d1, ..., d7. The

multipath is removed by taking sidereal day differences d1 − di, for i = 2, ..., 7. The

results consist of ionospheric delays and are represented, for an example PRN07, in

Figure 5.2 (a).

Unfortunately, the 7-day-long time series of day-differences is interspersed with

gaps due to satellites coming in and out of view. Therefore, traditional PSD estima-

tion methods are out of the question. To estimate the spectral content of the iono-
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spheric delay, we instead turn to the Lomb-Scargle periodogram, which is specifically

developed to deal with cyclic data impacted by data gaps [54]. The grey curve shown

in Figure 5.2 (b) shows the Lomb-Scargle PSD estimate of the ionospheric residual

data for PRN 07.

Given a PSD of ionospheric error, it now is necessary to determine the cutoff

frequency fc above which there is negligible power. Ideally, this would be done by

choosing the fc such the area under the PSD curve to the right of fc is much smaller

than the carrier phase multipath error variance. However, the jittery nature of the

PSD estimate makes this impractical, requiring that this process be applied to a

close overbound (green curve in Figure 5.2 (b)) of the PSD curve. Still the process

assumes that the carrier phase multipath error variance is known a-prior, which it is

not. A more practical, albeit less rigorous, method using the same PSD overbound

is to consider the cutoff frequency to be at approximately the point where the PSD

shows a 40dB drop (i.e., 1/100 power). We will proceed with this simpler method to

determine f i
c for each PRN i, but with knowledge that the more rigorous approach

can also be applied in a second iteration once an estimate of the carrier phase variance

is available.

To ensure the high-pass filtering accounts for all of the ionospheric delay, the

final cut off frequency fc is selected as:

fc = max
i
f i
c . (5.5)

The resulting cut off frequency is fc = 1.08 × 10−3 Hz (i.e., τc = 15.4 min). Figure

5.3 shows the carrier phase multipath obtained after high pass filtering the residuals

of Equation 5.4 for each of the satellites in view during 24h.

5.3 Multipath error modeling

To generate high integrity, time correlated error models for carrier phase mul-
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Figure 5.3. Resulting carrier multipath after high pass filtering of the L1−L2 residuals
(all PRNs)

tipath, we have shown in the methodology section that the first step is stationarity

testing and partitioning. Clearly, the time series shown in Figure 5.3 are not station-

ary since multipath is elevation dependent: low elevation measurements have larger

variances than their high elevation counterparts. A common way to resolve this issue

is by applying an elevation-dependent mapping function mϕ(θ
i
k) to the carrier phase

multipath:

mϕk
(θik) = a+ be−θik/c, (5.6)

where a, b and c are environment dependent parameters. For the data set under study

here, we choose a = 1, b = 2.9 and c = 10. The mapped-multipath residuals ϵi,f1−f2
ϕ,k,r

are then expressed with respect to εi,f1−f2
ϕ,k,r as:

εi,f1−f2
ϕ,k,r = mϕ(θ

i)ϵi,f1−f2
ϕ,k,r . (5.7)

Figure 5.4 shows the mapped (ϵi,f1−f2
ϕ,k,r ) and unmapped/raw (εi,f1−f2

ϕ,k,r ) carrier

phase multipath for an example PRN 07.

The mapped carrier phase multipath of each satellite in view is then tested

for stationarity and partitioned accordingly. The stationary segments (of L1 − L2

multipath) are then converted to the PSD domain and upper bounded as the sum of
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Figure 5.4. Mapping of the carrier phase multipath for PRN 07

Figure 5.5. PSD bounding of the L1 − L2 carrier phase multipath

a white noise with σWN = 0.4 cm and a FOGMRP with σϕ = 1.7 cm and τϕ = 5 min,

as represented in Figure 5.5.

5.4 Equivalence to iono-free measurements

The model derived is specific to L1−L2 measurement differences. However, KF

uses iono-free measurements. This section develops a model for iono-free multipath,

based on the model derived above. For the purposes of this derivation, let us simplify

the notations as follows:
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• ϕIF is an iono-free carrier phase measurement,

• ϕLi
is a carrier phase measurement on frequency Li (e.g. L1 or L2 for GPS),

• ϕFD is a frequency difference measurement: ϕL1 − ϕL2 ,

• λLi
is the wavelength associated with frequency Li.

The iono-free combination is expressed as:

ϕIF =
λ2L1

λ2L1
− λ2L2

ϕL1 −
λ2L2

λ2L1
− λ2L2

ϕL2 . (5.8)

The relationship between the variances can therefore be expressed as:

⟨ϕ2
IF ⟩ =

(
λ2L1

λ2L1
− λ2L2

)2

⟨ϕ2
L1
⟩+

(
λ2L2

λ2L1
− λ2L2

)2

⟨ϕ2
L2
⟩. (5.9)

Assuming independent, identically distributed measurements (which is a conservative

assumption to obtain ⟨ϕ2
IF ⟩ ), we have ⟨ϕ2

L1
⟩ ≈ ⟨ϕ2

L2
⟩, and therefore:

⟨ϕ2
IF ⟩ =

[(
λ2L1

λ2L1
− λ2L2

)2

+

(
λ2L2

λ2L1
− λ2L2

)2
]
⟨ϕ2

L1
⟩. (5.10)

The frequency-difference measurements introduced in this chapter are ex-

pressed as:

ϕFD = ϕL1 − ϕL2 . (5.11)

Their variances can therefore be expressed as:

⟨ϕ2
FD⟩ = 2⟨ϕ2

L1
⟩. (5.12)

Combining Equations 5.10 and 5.12 yields:

⟨ϕ2
IF ⟩ =

1

2

[(
λ2L1

λ2L1
− λ2L2

)2

+

(
λ2L2

λ2L1
− λ2L2

)2
]
⟨ϕ2

FD⟩ (5.13)
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5.5 Summary of the error model

The multipath model used in this work has been derived from data collected

from an antenna on the rooftop of the Illinois Institute of Technology’s Retalliata

Engineering building, in Chicago IL. The experimental KF performance assessment

a few chapters later will use data from the same antenna.

Carrier multipath error εMP,ϕ is modeled as the product of two main compo-

nents: a deterministic component, which depends on satellite elevation (θik), and a

random component, which depends on the environment of the receiver:

εiMP,ϕ,k = mϕ(θ
i
k)ϵMP,ϕ,k (5.14)

The deterministic component (called a mapping function mϕ(θ
i
k) is expressed as:

mϕ(θ
i
k) =

√
f 4
L1 + f 4

L2

(f 2
L1 − f 2

L2)
2

(
1 + 2.9e−θik/10

)
, (5.15)

where θik is the elevation of satellite i at time k (in degrees), and fL1 and fL2 are the

(constellation dependent) transmitting frequencies (L1 and L2 for GPS, E1 and E5a

for Galileo).

The random component (ϵMP,ϕ) is modeled separately and is propagated as a

state in the KF time update. A detailed analysis of this component was performed in

this chapter to define a bounding error model for the Rettaliata Engineering building

rooftop antenna environment under study. In the analysis, we evaluated carrier phase

multipath errors using L1 − L2 carrier phase data collected at the location shown in

Figure 5.1. We used this data to determine that the L1 −L2 carrier-phase multipath

errors could be robustly modeled (i.e., PSD-upper-bounded) using a white noise with

σWN = 0.4 cm and a FOGMRP with σϕ = 1.7 cm and τϕ = 300 sec. The single

frequency carrier multipath can therefore be modeled by a white noise with σWN =

0.28 cm and a FOGMRP with σϕ = 1.2 cm and τϕ = 5 min. The conversion to
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iono-free measurements is embedded in the mapping function of Equation 5.15 which

will be present in the observation matrix of the Kalman Filter in Chapter 7.

5.6 Application to aircraft multipath

In the case of aircraft carrier phase multipath modeling, two main aspects will

differ:

− The dynamics (e.g. pitch, roll, yaw) and dimensions of the aircraft will directly

impact the carrier phase multipath.

− The choice of cut off frequency for the ionospheric delay will vary depending on

days/times and locations of the flight tests.

5.6.1 Ionospheric delay filtering. The ionospheric cut-off frequency fc obtained

for the rooftop multipath case was specific to the data set collected. Flight data

obtained from an airplane flying through different parts of the world on different days

will naturally have different ionospheric delays. Therefore, for aircraft flight test data,

the process explained in Section 5.2 will need to be performed with data local to the

aircraft trajectory.

To do so, IGS [47] provides GNSS measurements from a network of worldwide

stations. L1 and L2 measurements collected at a station near the aircraft’s trajectory

on the same days as the data set could be used to reproduce the analysis of Section

5.2 to obtain ionospheric delay estimates and deduce a new data set specific cut off

frequency fc.

Similarly to the work done in Section 5.2, we must ensure that the filtering

performed on the residuals will only remove ionospheric delay (and no multipath

error). The choice of cut off frequency must be validated. In the case of a static

data collection, the frequency content of the multipath was dependent on geometry
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changes and distances to reflective surfaces. In the case of in-flight measurements

however, the motion and attitude of the aircraft will directly impact the frequency

content of the multipath.

In Appendix F, Bessel functions were used to represent the power and fre-

quency content of simulated multipath, and works as follows: let us call fg the fre-

quency at which the receiver’s environment/geometry changes. By scaling the expan-

sion of Bessel multipath expression by fg, we can observe the frequency distribution of

the multipath contribution on a carrier phase measurement. Even though we showed

that the frequency content of rooftop multipath and ionospheric delay overlaps and

results in a difficult choice of cut off frequency fc, the aircraft analysis showed that

this methodology could still be applied to aircraft in-flight data and yielded better

results, with much less overlap and a more fruitful and less risky filtering of the

ionospheric delay.

In the case of aircraft multipath, fg will greatly depend on the phase of the

flight (i.e. landing, approach, en route... etc), as well as the attitude of the aircraft

(e.g. banking, roll... etc). The Bessel analysis is performed for an example Boe-

ing 747-200 aircraft (specific reflective surface distances), and literature is used to

associate an fg value to various aircraft attitudes.

With these parameters, the Bessel analysis shows that the power distribution

of simulated in flight carrier phase multipath is such that the ionospheric delay cut

off frequency fc (specific to Chicago at the time of the static data collection) removed

negligible amount of multipath during the ionospheric filtering step.

Given a specific in flight aircraft data set, one can re-apply this analysis to

its associated location and time (that will provide ionospheric delay cut off frequency

fc), aircraft type (that will provide the distance measurements needed to simulate
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the frequency content of multipath), and aircraft attitude (to estimate fg) in order

to validate the choice of filtering cut off frequency fc.

5.6.2 Multipath error modeling. In Equation 5.6, we introduced a mapping

function that was applied to the multipath errors in order to remove their elevation

dependency. The parameters a, b, and c were chosen for that purpose, and are specific

to the dataset studied there. For aircraft multipath data, a new set of parameters will

need to be selected. Once stationarity is asserted, the time series can be converted

to the PSD domain and upper bounded.
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CHAPTER 6

INERTIAL ERRORS MODELING

The PSD bounding method is the cornerstone of this dissertation as it al-

lows for the derivation of high integrity, time correlated error models. In particular,

the PSD estimation method derived in [11] relies on taking the Fourier Transform

of a windowed ACF. However, we showed in Chapter 2 that for certain types of

non-stationarity (e.g. fast varying processes with time-independent PSDs), the ACF

cannot be used to obtain the PSD. In such cases the error model PSD must be ob-

tained by bounding the periodogram of the errors. But sample periodogram estimates

are often noisy which may lead to bounding models that are overly conservative. To

improve the quality of the measurements used during the modeling, a method based

on AV bounding was also introduced (since manufacturers typically provide AV curves

of the sensors errors, obtained from highly controlled tests).

In the first part of this chapter, we introduce the error terms used in our final

inertial error models. After a brief reminder on the PSD bounding method and its

limitations, the AV bounding methodology is introduced. However, we will also show

that AV bounding alone does not ensure integrity, so additional necessary conditions

to ensure the integrity of an AV bound are derived.

The second part of the chapter applies these methodologies to an example

IMU. Following the procedure detailed in the first part of the chapter, high integrity

error models of accelerometers and gyroscopes errors are derived with both methods

and compared.



88

6.1 Methodology: from specifications to bounding model

6.1.1 IMU error model structure. IMU errors are complex stochastic pro-

cesses that can be modeled differently depending on the application of interest. For

high-precision navigation applications, or applications involving long periods of time

without external aiding, comprehensive error models are needed. Such models must

include the effects of acceleration sensitivity errors, cross-axis sensitivity errors, non-

orthogonality errors and installation misalignment errors [55]. In this work, we are

primarily interested in inertial-aided applications and will therefore restrict ourselves

to an error model structure widely-used for this purpose ( [12, 56–59]):

qm = (1 + sf )qt + b(t) + p(t) + νs(t) (6.1)

where qm is the measured output, which can be that of an accelerometer or gyroscope.

The true value of the variable being measured qt is impacted by a scale factor error

sf , a time-varying bias b, an acceleration/rate random walk (Ac/R-RW) p, and a

velocity/angular random walk (V/An-RW) νs for an accelerometer/gyro, respectively.

When a noisy sensor output signal is integrated, the result drifts over time due

to the accumulation of the noise. This drift is called random walk. For IMU errors,

there are two main types of random walk: the angular random walk for gyroscopes,

and the velocity random walk for accelerometers. The V/An-RW component is due

to thermo-mechanical fluctuations within the sensor and is modeled as additive white

Gaussian noise with zero mean. However, in some cases, IMU sensors can also be

impacted by an acceleration RW (for accelerometers) or a rate RW (for gyroscopes).

In the rest of this paper, this term will be called Ac/R-RW. Their time derivatives

can be modeled as:

ṗ(t) = νp(t) (6.2)

where νp(t) is a white Gaussian process, with zero mean and standard deviation σp.
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The bias component can be expressed as:

b(t) = br + bs(t) (6.3)

The initial bias of an IMU will be different at each power-up due to signal processing

initial conditions and physical properties (thermal, mechanical, and electrical varia-

tions). This random variation in initial bias is known as the turn-on bias stability (or

bias repeatability) br.

The bias stability (or bias instability) bs is the time-varying component of

the bias and measures how much deviation or drift the sensor experiences from its

starting value. It is a measure of how stable the bias is over a given time period under

constant temperature.

6.1.2 PSD bounding and its limitations. To model the error components

in Equations 6.1 to 6.3, data can be collected in the laboratory. These datasets can

then be converted to the frequency domain by following the methodology described in

Chapter 2, Section 2.2.3.2: using periodograms. To upper bound these errors in the

PSD domain, we define a bounding model S̄WGR as (with subscript: WN for white

noise, G for FOGMRP, and RW for random walk):

S̄WGR(f) = S̄WN(f) + S̄G(f) + S̄RW (f) (6.4)

Each term in this equation can be found in Table 6.1. The velocity random walk

νs is modeled as white noise with PSD SWN (defined by the parameter N0), the

acceleration random walk p is modeled as a random walk with PSD SRW (defined

by the parameter K), and the time-varying bias b is modeled as a FOGMRP with

PSD SG (defined by the parameters σG and τG). The time-varying bias b is actually a

flicker noise (i.e., 1/f) process, which cannot be modelled in the state space domain,

so we instead desire to bound its error contribution using a FOGMRP.

The resulting composite model, although bounding, is likely to be overly-
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conservative due to the poor quality of the sample PSD estimates (as shown later, in

the experimental section). The following subsections present a second methodology,

based on AV curves.

6.1.3 Allan Variance Upper-Bounding Method. The AV domain representa-

tion is commonly used in the field of inertial sensor modeling because of its ability to

identify and isolate various error components contained in a single dataset. Manufac-

turers very often rely on AV curves to provide information about their sensors. The

curves they provide have often been generated under tightly controlled environments

and are therefore of high quality. Taking advantage of these curves in the modeling

of inertial sensor errors could therefore be very advantageous.

To leverage the methodology shown in Chapter 2, we must show that a bound

in the AV domain also provides a bound in the PSD domain. The relationship between

AV and PSD can be expressed as [19]:

Σ2
x(τ) = 4

∫ ∞

0

sin4(πfτ)

(πτf)2
Sxx(f)df (6.5)

Equation 6.5 shows that the mapping from PSD domain to AV domain is one-to-one

for all Sxx [20].

As already noted, we consider here IMUs three types of errors impacting the

IMUs (expressed in both PSD and AV domains in Table 6.1):

• the velocity RW, modeled as a WN,

• the acceleration RW, modeled as a RW, and

• the bias instability, which is flicker noise, but will be conservatively accounted

for using a FOGMRP model to enable incorporation in state space realizations.

Appendix E analyses each error type and shows that the inverse mapping from AV

to PSD to AV is also one-to-one for WN, flicker noise and RW. But since flicker
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noises cannot be modeled in the state space domain and must instead be modeled

as FOGMRP, we will show here that AV upper bounding does not necessarily imply

PSD upper bounding, and that an additional necessary criteria need to be satisfied.

We begin by considering two bounding scenarios:

• Case (i): The errors are upper bounded with a white noise and a random walk,

• Case (ii): The errors are upper bounded with a white noise, a random walk,

and a FOGMRP.

Both of these cases are represented in a diagram in Figure 6.1. The notations used

in this section refer to the ones introduced in Table 6.1. Additionally, let us define

Q := K2.

Figure 6.1. Diagram of AV bounding cases

6.1.3.1 Case (i). Let us first consider the case of an error upper bounding

consisting of two types of errors: a white noise (WN, with parameter N0) and a

random walk (RW, with parameter Q).
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AV Bounding Requirements. We wish to find upper bounding ‘delta’ parameters

∆N and ∆Q such that:

Σ
2

WN(τ) + Σ
2

RW (τ)) =
N0 +∆N

τ
+

(Q+∆Q) τ

3

>
N0

τ
+

2ln(2)

π
σ2
F +

Qτ

3
= Σ2

WN(τ) + Σ2
F (τ) + Σ2

RW (τ) ∀τ > 0. (6.6)

After simplification and re-ordering, this inequality becomes:

∆Q

3
τ 2 − 2ln(2)

π
σ2
F τ +∆N > 0. (6.7)

To ensure that no real root exists for τ , we must have:

∆N∆Q > 3

(
ln(2)

π

)2

σ4
F ≈ 0.15σ4

F . (6.8)

PSD Bounding Requirements. To ensure integrity, we must also verify that the

PSDs of the errors are upper bounded. As in the AV case, we wish to find upper

bounding deltas ∆N and ∆Q such that:

SWN(f) + SRW (f) =
N0 +∆N

2
+
Q+∆Q

(2πf)2

>
N0

2
+

σ2
F

2πf
+

Q

(2πf)2
= SWN(f) + SG(f) + SRW (f) ∀f > 0. (6.9)

This, in turn, results in the inequality/condition:

∆N∆Q >
1

2
σ4
F . (6.10)

Deriving an error model by AV bounding will ensure Equation 6.8 is verified, but

noting that 1/2 > 0.15, this does not guarantee PSD bounding. One must take the

additional step to meet the condition in Equation 6.10 to guarantee the integrity of

the model. This means that either, or both, ∆N and ∆Q will need to be increased.

For cases where the flicker noise component σF is large, modeling using only a WN

and a RW can become very conservative (i.e., loose bounding, as observed in Figure
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6.1), motivating the introduction of additional error model to account for the flicker

noise.

6.1.3.2 Case (ii). In this case, the upper bound used is comprised of a white

noise (to upper bound the velocity random walk), a random walk (to upper bound

the acceleration random walk), and a FOGMRP (to upper bound the flicker noise).

AV Bounding Requirements. An upper bounding model in the AV domain

would have to verify the inequality:

Σ
2

WN(τ) + Σ
2

G(τ) + Σ
2

RW (τ)) =
N0 +∆N

τ
+
Q+∆Q

3
τ

+
2σ2

GτG
τ

(
1− τG

2τ

(
3− 4e−τ/τG + e−2τ/τG

))
>
N0

τ

+
2ln(2)

π
σ2
F +

Qτ

3
= Σ2

WN(τ) + Σ2
F (τ) + Σ2

RW (τ) ∀τ > 0. (6.11)

Let us define the following set of variables:

x :=
τ

τG
, b := ∆Q

τ 2G
3

aG := 2σ2
GτG, aG := 2σ2

F τG.

Equation 6.11 can then be re-arranged as:

2bx3 − 2ln(2)aF
π

x2 + 2 (∆N + aG)x − aG
(
3− 4e−x + e−2x

)
> 0. (6.12)

PSD Bounding Requirements. Similar to case (i), additional PSD bounding

requirements must be derived:

SWN(f) + SG(f) + SRW (f) =
N0 +∆N

2

+
2

τG

σ2
G

(2πf)2 + 1
τ2G

+
Q+∆Q

(2πf)2
>
N0

2
+

σ2
F

2πf
+

Q

(2πf)2

= SWN(f) + SG(f) + SRW (f) ∀f > 0. (6.13)



95

Figure 6.2. Example of failed PSD criterion.

Using the previously defined notation, as well as u := 2πfτG, and re-organizing the

inequality gives:

∆Nu4 + aFu
3 + (∆N + 2aG + 6b)u2 − aFu+ 6b > 0. (6.14)

As in case (i), satisfying the AV bounding requirement (here Equation 6.12) does not

ensure that the PSD bound (here Equation 6.14) is satisfied. Figure 6.2 shows an

example case for which the AV bounding criterion is met (left figure); but the PSD

one isn’t (right figure).

For case (ii), the steps involved in the development of a high integrity, time

correlated error model through the AV domain are represented in Figure 6.3. The

manufacturer’s data in the AV domain Σ2
WFR (including a velocity RW, an accelera-

tion RW, and flicker noise) is first upper-bounded by: Σ
2

WFR > Σ2
WFR. For the type

of processes affecting an IMU, Appendix E shows that the data is also bounded in

the PSD domain: SWFR > SWFR. Since flicker noise cannot be expressed in state

space, an additional bound Σ
2

WGR > Σ
2

WFR is considered, where Σ
2

WGR is the AV of

a sum of WN, a FOGMRP and a RW that satisfies Equations 6.12 and 6.14. This

model is a high-integrity AV and PSD upper-bounding model that can be included
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in a KF.

Figure 6.3. FlowChart of the steps involved in AV bounding

6.1.4 Modeling of IMU errors components in a KF. We have so far de-

rived high integrity, time correlated error models for inertial errors via PSD and AV

bounding. The component errors are modeled individually using different random

processes:

• The velocity/angular random walk (V/An-RW) νs is modeled as a white noise

with standard deviation σs,

• The acceleration/rate random walk (Ac/R-RW) p is modeled as a RW whose

driving noise σp can be expressed as: σp = K∆t. AC/R-RW are more often

defined by their magnitude K.

• The bias instability bs is a flicker noise. Since flicker noises cannot be modeled

in the state space domain, this flicker noise will be modeled using a FOGMRP

of parameters σbs and τbs .
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In order to implement the bounding error models in a KF, Equation 6.1 is lin-

earized about the best available estimate of each state, denoted below by an asterisk,

qt =
1

1 + sf
(qm − b(t)− p(t)− νs(t)) (6.15)

= h(q∗m, b
∗, p∗, ν∗s , s

∗
f ) +

δh

δqm

∣∣∣
∗
(qm − q∗m) +

δh

δb

∣∣∣
∗
(b− b∗) +

δh

δp

∣∣∣
∗
(p− p∗)

+
δh

δνs

∣∣∣
∗
(νs − ν∗s ) +

δh

δsf

∣∣∣
∗
(sf − s∗f ).

Setting b∗ = p∗ = ν∗s = s∗f = 0, we obtain the following linearized model:

qt = qm − b− p− νs − q∗msf . (6.16)

The final, bounding IMU model parameters can now be used in a GNSS/INS

KF. An illustrative state propagation equation for a simplified, single-position-coordinate

navigation problem using an accelerometer can be expressed as

ẋ

v̇

ḃ

ṗ

ṡf


=



0 1 0 0 0

0 0 −1 −1 −q∗m
0 0 −1/τ 0 0

0 0 0 0 0

0 0 0 0 0





x

v

b

p

sf


+



0

1

0

0

0


qm +



0

−νs
νbs

νp

0


, (6.17)

where:

• νs ∼ N (0, σ2
s) is the white noise driving the velocity/angular RW,

• νbs ∼ N (0, σ2
bs
) is the white noise driving the FOGMRP bias (in)stability, and

• νp ∼ N (0, σ2
p) is the white noise driving Acceleration/Rate RW with σp = K∆t

From a filtering perspective, the presence of p (Ac/R-RW) in the state vector, which

the literature and manufacturers sometimes choose to neglect, increases the number

of states by 6 (3 accelerometers and 3 gyroscopes) and may complicate the GNSS/INS
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integration. Therefore, it may be tempting to use a more conventional model and

replace Equation 6.1 with

qm = (1 + sf )qt + b(t) + νs(t) , (6.18)

resulting in the simplified system:
ẋ

v̇

ḃ

ṡf

 =


0 1 0 0

0 0 −1 −q∗m
0 0 −1/τ 0

0 0 0 0




x

v

b

sf

+


0

1

0

0

 qm +


0

−νs
νbs

0

 . (6.19)

From an integrity perspective, this order reduction is only permissible if the

AV of the instrument (accelerometer or gyroscope) does not show evidence of an

Ac/R-RW component. In the rest of this chapter we will present a methodology to

estimate the parameters in the more general model of Equation 6.17.

6.2 Experimental evaluation

IMU errors are environment-dependent and can vary with factors including

temperature, vibrations, and motion. Generating IMU error models that represent

multiple possible scenarios requires costly equipment (e.g., temperature chamber,

vibration table, rotation table, etc.) and multiple datasets. In this work, we fo-

cus on breaking down and modeling IMU performance for static, constant-ambient-

temperature data. The same concepts can be used in other testing environments.

6.2.1 Data collection setup. In this section, we apply the methodology pre-

sented above to IMU data from a Sensonor STIM-300. The STIM-300 is a small,

tactical grade, low weight, high performance IMU that contains 3 highly accurate

MEMS gyros, 3 high stability accelerometers and 3 inclinometers. The IMU is fac-

tory calibrated and compensated over its entire operating temperature range (−40°C

to +85°C). More details on this IMU can be found in [60].
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Figure 6.4. Experimental set up (left) and environment’s temperatures (right)

Data collection was performed over multiple 10 h-long periods in static condi-

tions at a 125Hz sampling frequency. To monitor environmental temperature varia-

tions and ensure that they did not exceed the variations that can be compensated by

the IMU, a temperature sensor was placed next to the IMU (see Figure 6.4). Five of

these data sets satisfied the criterion ∆T ≤ 1°C/10 h and were used in the following

work.

6.2.2 Accelerometer errors. In Chapter 2, we introduced the limitations of

the PSD bounding approach for non-stationary processes with time invariant PSDs,

and introduced another approach based on AVs. In this section, we apply these two

methodologies to the accelerometer errors of the STIM-300 IMU, using the datasets

mentioned above and the IMU’s specification document.

6.2.2.1 Modeling through PSD bounding. The PSDs derived from these sets

using periodograms are represented in gray in Figure 6.5.

To upper bound these errors in the PSD domain, we define a bounding model

S̄WGR as (with subscript: WN for white noise, FOGMRP, and RW):

S̄WGR(f) = S̄WN(f) + S̄G(f) + S̄RW (f) (6.20)
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Figure 6.5. Experimental results: upper-bounding sample accelerometer error PSDs.

Each term in this equation can be found in Table 6.1. The velocity random walk

νs is modeled as white noise with PSD SWN (defined by the parameter N0), the

acceleration random walk p is modeled as a random walk with PSD SRW (defined by

the parameter K), and the time-varying bias b is modeled as a FOGMRP with PSD

SG (defined by the parameters σG and τG). All of these parameters are also in Table

6.1. The bias b is actually flicker noise, but as already noted, we want to bound its

error contribution using a FOGMRP because flicker noise cannot be modeled in the

state space domain.

In Figure 6.5, the black curve represents the IMU specifications as provided

by the manufacturer. It does not upper-bound the sample PSDs. Instead, we can

derive a PSD-based error model by selecting a set of values for Table 6.1’s parameters

K, σG, τG and N0 such that S̄WGR,lab(f), the red curve of Figure 6.5, tightly upper-

bounds the sample PSD curves over the frequency range in our datasets. The upper

bounding values are given in the fourth column of Table 6.2.

This model, although bounding, is likely to be overly-conservative due to the

poor quality of the sample PSD estimates. The following paragraphs present a second

methodology, based on AV curves.



101

6.2.2.2 Modeling through Allan Variance bounding. In this section, we

apply the methodology in Figure 6.3 to accelerometer errors for an example IMU

(STIM-300 [60]).

Figure 6.6. AV and PSD domain bounding of IMU errors.

The left plot in Figure 6.6 shows three IMU sample error AV curves Σ2
WFR (in

grey) for the IMU’s x-axis, y-axis, and z-axis as provided by the STIM-300’s man-

ufacturer. The AV domain bound Σ
2

WFR is represented in blue. The “KF-friendly”

bound Σ
2

WGR is shown in red. Their respective blue and red PSD curves that en-

sure Equations 6.12 and 6.14 are satisfied are represented in the right plot of Figure

6.6. The AV and PSD upper-bounding model parameter values are given in the last

column of Table 6.2.

The two bounds in Table 6.2 are both high-integrity IMU error models, but

they are impacted by the quality of the datasets which they are based upon. The

PSD bounding results S̄WGR,lab were obtained using our own experimental lab data

collected in unverified static conditions. Vibrations and temperature variations were

not fully controlled due to our limited lab equipment. In contrast, the bounding

results Σ
2

WGR were derived from datasets given in the IMU manufacturer specifica-
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Table 6.2. Accelerometer errors bounding model values

Error type Param. Units
Bounds

S̄WGR,lab

(lab data)

S̄WGR, Σ̄
2
WGR

(manuf. specs)

White noise N0 m/s/
√
h 6.9× 10−5 2.77× 10−6

FOGMRP
σG m/s2 3.4× 10−3 5.8× 10−4

τG sec 110 100

R.W. K m/s/h3/2 5.5× 10−5 1.5× 10−5

tion documents. These datasets were obtained in a highly controlled environment.

The last two columns of Table 6.2 show that model parameters have much larger

values for S̄WGR,lab than for SWGR. This is most likely because the experimental data

collected in our laboratory is significantly impacted by vibrations and temperature

whereas manufacturer specs are not. The new high-integrity spec-based error model-

ing method not only avoids having to collect own-generated data, but it also provides

a tighter error bound.

In addition, it is important to note there are an infinite number of choices of

parameter values K̄, σ̄G, τ̄G and N̄0 and value combinations that could have been se-

lected to achieve PSD or AV upper bounds. Depending on the application of interest,

a user can decide to apply this methodology and choose a bound which minimizes

one parameter over another one.

6.2.3 Gyroscope errors. A similar approach can be applied to the gyroscope

errors of the STIM-300 IMU, starting with the PSD bounding method of Chapter 2,

Section 2.2.3.2.

6.2.3.1 Modeling through PSD bounding. The gyroscope errors collected in
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the five STIM-300 data sets introduced earlier are converted to the frequency domain

using the periodogram function. These curves are represented in grey in Figure 6.7.

The information provided in the STIM-300 specification document allows us to derive

its associated curve (black curve in Figure 6.7). Similar to the case of accelerometer

error, the black curve does not over bound the errors, but it instead appears to simply

be a good approximation of them. To derive a high integrity error model, we must

upper bound the sample PSD curves (in grey), and obtain the red curve.

Figure 6.7. Experimental results: upper-bounding sample accelerometer error PSDs.

The error model values used to obtain the red curve are described in Table

6.3, in the S̄WGR,lab column. These values are quite large, and the resulting model is

likely to be overly conservative due to the noisy nature of the sample PSD estimate.

The following subsection derives a high integrity model for the gyroscope errors using

the manufacturer’s AV curves.

6.2.3.2 Modeling through Allan Variance bounding. Sample AV curve for

gyroscopes errors are extracted from the STIM-300 specification document (repre-

sented in grey on the left plot of Figure 6.8). They are upper bounded in the AV

domain using a sum of WN, flicker noise, and RW: Σ̄2
WFR. We have shown above

that these error sources have a one-to-one mapping between the AV and the PSD
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domain, therefore, since Σ̄2
WFR upper bounds the sample AV curves, S̄WFR will upper

bound their associated PSD curves. Finally, values for the WN, FOGMRP and RW

parameters are selected so as to overbound both Σ̄2
WFR and S̄WFR (i.e. the criteria

defined by Equations 6.12 and 6.14 are met). This bounding model is represented by

the red curves in Figure 6.8 and in the last row of Table 6.3.

Figure 6.8. AV and PSD domain bounding of IMU errors.

Similar conclusions to the case of accelerometer errors can be drawn: even

though both methods provide high integrity error models for the gyroscope errors,

the model obtained through the PSD bounding of experimental data is much more

conservative than the one obtained through AV (and PSD) bounding of the manu-

facturer’s curves. A user having access to AV curves from the manufacturer should

therefore prioritise the second methodology.

6.3 Opening remarks

In the remainder of this dissertation, we focus on a KF that relies solely on

GNSS measurements. Inertial measurements are often used in combination with

GNSS to improve the continuity of a system (for example in urban canyons). There-

fore, even though the error models developed here are not used in the following,
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Table 6.3. Gyroscope errors bounding model values

Error type Param. Units
Bounds

S̄WGR,lab

(lab data)

S̄WGR, Σ̄
2
WGR

(manuf. specs)

White noise N0 deg/
√
h 0.54 0.17

FOGMRP
σG deg/h 5.85 1.01

τG sec 225 1500

R.W. K deg/h3/2 1.18 0.84

the methodology introduced is applicable to other potential navigation applications

requiring high integrity.
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CHAPTER 7

PERFORMANCE ASSESSMENT OF FAULT FREE RECURSIVE ARAIM

In Chapter 1, the limitations of snapshot ARAIM were brought to light. In [7],

the authors showed that those limitations could be alleviated by exploiting satellite

motion in ARAIM. One way to do so is by developing what we will call recursive

ARAIM or KF ARAIM : a KF implementation of ARAIM, where measurements are

filtered and integrated over time, as opposed to the traditional snapshot ARAIM

where measurements are used at individual times to estimate a position solution.

The Kalman filter derived in this chapter relies on two types of measurements:

iono-free code and carrier measurements. As the signal travels between the satellite

and the user, it is impacted by satellite orbit and clock errors, tropospheric delay,

multipath and thermal noise:

ρik = rik + c
(
δtr,k − δtik

)
+ Tk + εMP,ρ,k + εTN,ρ,k + biGD,ρ (7.1)

= rik + c
(
δtr,k − δtik

)
+ TGPT2w,k +mW (θik)ϵ

i
T,k +mρ(θ

i
k) (ϵMP,ρ,k + ϵTN,ρ,k) + biGD,ρ.

ϕi
k = rik + c

(
δtr,k − δtik

)
+ Tk + εMP,ϕ,k + εTN,ϕ,k + ηiIF + biGD,ϕ (7.2)

= rik + c
(
δtr,k − δtik

)
+ TGPT2w,k +mW (θik)ϵ

i
T,k +mϕ(θ

i
k) (ϵMP,ϕ,k + ϵTN,ϕ,k)

+ ηiIF + biGD,ϕ.

where:

− rik is the satellite-to-receiver range,

− c is the speed of light,

− δtik and δtr,k are the satellite and receiver clock bias,



107

− mW is the wet mapping function to the GPT2w tropospheric model (defined in

Chapter 4),

− mϕ is the (environment specific) carrier multipath and thermal noise mapping func-

tion (defined in Chapter 5),

− mρ is the (environment specific) code multipath and thermal noise mapping func-

tion (defined later in this chapter),

− Tk is the tropospheric delay, and TGPT2w its model,

− ϵiorb,k, ϵ
i
T,k, and ϵMP,ϕ,k are the orbit and clock error, the GPT2w tropospheric delay

residuals and the carrier phase multipath respectively,

− ϵTN,ρ,k and ϵTN,ϕ,k are the code and carrier thermal noises,

− ηiIF is the satellite-dependent constant floating carrier cycle ambiguity.

− bGD,ρ/ϕ is the code/carrier phase group delay impacting the measurements (more

details in [38])

In order for the KF output state estimate error variances to be bounding,

these errors and their time correlations must be modeled and accounted for properly.

In previous chapters, we derived high integrity models for the time correlated errors

ϵiorb,k, ϵ
i
T,k, and ϵMP,ϕ,k. The thermal noise contributions, ϵTN,ρ,k and ϵTN,ϕ,k, are

white with bounding standard deviations specified in [1]. The following subsection

briefly summarizes the error models developed in previous chapters. Additionally,

Appendix G describes the snapshot models (specific to our testing environment) that

were developed for the code multipath errors. Code phase is only used at satellite

acquisition, so it is not necessary to model (or bound) their errors as random processes.
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7.1 Summary of GNSS error models

The dynamics of a FOGMRP, with parameters σx and τx, are expressed in

discrete form as:

xk+1 = e−∆t/τxxk +
√
σ2
x (1− e−2∆t/τx)ωk, (7.3)

ωk ∼ N(0, 1) and x0 ∼ N
(
0, σ2

0

)
where σ2

0 is the steady-state variance of the process.

Since the orbit and clock errors ϵiorb,k (with parameters σorb and τorb), the

tropospheric delay residuals ϵiT,k (with parameters σT and τT ), and the carrier phase

multipath ϵMP,ϕ,k (with parameters σϕ and τϕ) are all modeled as FOGMRPs, the

error states for a carrier phase measurement from any given satellite are modeled by

the following dynamic system:

ϵiorb

ϵiT

ϵiMP,ϕ


k+1

=



e−∆t/τorb 0 0

0 e−∆t/τT 0

0 0 e−∆t/τϕ





ϵiorb

ϵiT

ϵiMP,ϕ


k

+



√
σ2
orb (1− e−2∆t/τorb)√
σ2
T (1− e−2∆t/τT )√
σ2
ϕ

(
1− e−2∆t/τϕ

)


ωk (7.4)

The FOGMRP parameters of each error term are summarized in Table 7.1.

Additionally, since code measurements will be used at satellite acquisition

to aid in the cycle ambiguity estimation, code multipath and group delay must be

Table 7.1. GNSS Error Model Parameter Values

Error Type Subscript Clocks τ [sec] σ [m] Chapter

Orbit and Clock orb
GPS 20880 1.55 3

GAL 10800 0.7 3

Troposphere T 72000 0.09 4

Carrier multipath (L1) ϕ 300 0.012 5

Thermal noise (L1) TNϕ 0.0028 5
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account for as well. Appendix G derived an error model of the multipath environment

present in the following experimental results. This model will be referred to as σρ.

Code measurements are not only impacted by multipath but also group delays whose

dynamics are highly sensitive to small scale attitude motions and further complicated

by a multiplicity of reflective surfaces on platforms with complex shapes, again like

transport aircraft, making multipath far more amenable to stochastic modelling than

group delay. Since the two are often hard to separate, the code multipath model

σρ derived in Appendix G is believed to also cover a large portion of the group

delay’s impact. The remaining, un-modeled impact of the group delay bGD,ρ will be

accounted for through the use of an additional model term introduced later in Section

7.2.4.

7.2 Kalman Filter design

The following sections describe the steps employed in the KF design.

7.2.1 System State Selection. To incorporate the FOGMRP models in a KF, we

use state augmentation. Considering the following state vector:

xk =
[
r3×1 b2×1 ϵMPΦn×1

∆T1×1 ηIFn×1 ϵorbn×1

]T
k

(7.5)

where n is the total number of satellites in view at time k, r is the 3D East-North-Up

(ENU) position estimate of the receiver, b is the vector of user clock biases for the GPS

and Galileo constellations, ϵiMP,ϕ,k are the carrier multipath errors, ∆T is the GPT2w

zenith tropospheric delay residual, ηIF is the iono-free carrier phase ambiguity and

ϵorb are the satellite orbit and clock residual errors. Given n = nGPS +nGAL satellites

in view at time k, the state vector xk will have a dimension of m = 3n+ 6.

7.2.2 System Dynamic Model. The system’s discrete dynamic model is as

follows:

xk+1 = Φkxk + Γkwk (7.6)
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where xk is the state vector described in Section 7.2.1, Γk maps the process noise

input wk ∼ N (0,Wk) into the state vector, and the state transition matrix Φk and

process noise covariance matrix Wk are expressed as:

Φk =


I3×3

I2×2

e
−∆t/τϕIn×n

e−∆t/τtrop

In×n

e−∆t/τorbIn×n

 ,

Wk =


w∞I3×1

w∞I2×1

σ2
ϕ(1−e

−2∆t/τϕ)1n×1

σ2
trop(1−e−2∆t/τtrop)

0n×1

σ2
orb(1−e−2∆t/τorb)1n×1

 ,
where I is the identity matrix, and w∞ is an arbitrarily large value.

The diagonal components of the augmented states follow the dynamics of the

FOGMRPs introduced earlier in Equation 7.3. Since the user’s trajectory is not pre-

defined, our knowledge of the position and clock dynamics is assumed to be null (large

process noise).

7.2.3 Measurement Model. The measurements are iono-free code and carrier

measurements. Code measurements are only used at the first epoch a satellite becomes

visible, whereas carrier phase measurements are continuously used to estimate the

state vector. The carrier phase measurement model can be expressed as:

zk = Hkxk + νk (7.7)

where zk =
[
δϕ1

k ... δϕn
k

]T
, and δϕi

k are the carrier measurements after corrections

(GPT2w and satellite clock), νk is the measurement error vector, such that νk ∼

N (0,Vk), and the observation matrix Hk and measurement error covariance matrix

Vk are defined as:

Hk =

Gk,n×3

1nGPS×1 0nGPS×1

0nGAL×1 1nGAL×1

mϕk
In×n mWkn×1 In×n In×n

 ,
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and

Vk =


σ2
TN,ϕ,1,k

. . .

σ2
TN,ϕ,n,k

 ,
where Gk,n×3 is the geometry matrix containing the unit line of sight vectors of each

satellite in view. The measurement errors contained in νk are comprised of the thermal

noise [41–43]; all the other error terms are being handled by state augmentation.

7.2.4 KF Equations and Initialization. The KF relies on the successive use of

two equations: the time update (prediction) and the measurement update.

The time update relies on the user’s knowledge of the errors’ dynamics. At

any epoch k, the state vector and covariance matrices are updated using the following

equations:

xk|k−1 = Φkxk−1|k−1, (7.8)

Pk|k−1 = ΦkPk−1|k−1Φ
T
k + ΓkWkΓ

T
k . (7.9)

The measurement update can be expressed as:

xk|k = xk|k−1 + Lk

(
zk −Hkxk|k−1

)
, (7.10)

Pk|k = (In×n − LkHk)Pk|k−1, (7.11)

where Lk = Pk|k−1H
T
k

(
Vk +HkPk|k−1H

T
k

)−1
is the Kalman gain.

The state vector estimate is initialized using the following expression:

x0 =
[
01×3 01×2 01×n 0 (δϕk − δρk)1×n 01×n

]T
, (7.12)

where δρk and δϕk are the code and carrier measurements of the new satellites in view,

after corrections (GPT2w and satellite clock). The covariance matrix is initialized as:

P0 =


w∞I3×3

w∞I2×2

σ2
ϕIn×n

σ2
trop (

σ2
∆GD

+σ2
ρ

)
In×n

σ2
orbIn×n

 , (7.13)
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where σ2
∆GD

can be interpreted as an inflation factor that accounts for the unknown/un-

modeled impact of the group delays bGD,ρ on the code measurements ρ and its effect

on the initial estimate of the ambiguity. Note that position and clock states are given

very high initial covariance values (w∞) because we do not assume prior knowledge

on these states, cycle ambiguity state variances are initialized based on the code mea-

surement error (since it is much larger than carrier phase error contribution), and the

other states are initialized based on their steady states values.

7.3 Performance assessment

In this section, we assess four key elements of this research:

• The value of a KF approach for GNSS positioning over the more traditional

snapshot Least Square Estimator (LSE) method. Assuming that both methods

use the same error models, what are the performance benefits of a KF over a

LSE approach?

• The sensitivity of KF performance to variations in the error models derived in

Chapters 3 through 5.

• The advantage of tightening the orbit and clock error bounds by separating

their models based the satellites’ clocks.

• The overall performance of the KF design over 24h satellite geometry variations.

To address these four points, we collected and processed data described in the follow-

ing subsection.

7.3.1 Experimental set up. On September 5th 2022, 24 hours of data were col-

lected at a 1 sec sampling rate using a OEM6 NovAtel receiver and pinwheel NovAtel

antenna, located on the rooftop of the Rettaliata Engineering building (Illinois Insti-
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tute of Technology campus). The environment of the antenna is shown in Chapter 5,

Figure 5.1, where the red star represents the antenna location.

Figure 7.1. GPS and Galileo satellites in view

These 24h are divided into 4h segments: 80 data sets, shifted by 15 min from

one another. The first 4h segment is used in subsections 7.3.2 through 7.3.6. The

other segments are used for validation in subsection 7.3.6.

Because the orbit and clock error models derived in [23, 61] are restricted to

the GPS and Galileo constellations, only those two constellations were processed in

this chapter. The number of visible GPS and Galileo satellites during the experiment

is shown in Figure 7.1.

7.3.2 Advantage of KF over LSE with the same error models. In this

first test case, we evaluate the performance improvement of a KF incorporating time

correlated error models over the LSE approach. The error models standard deviations,

coefficients and mapping functions already described are applied to both the LSE and

KF approaches. Since LSE is a snapshot approach, the time constants in Table 7.1

are not involved in the LSE estimation process. Also, the typical LSE implementation

uses carrier-smoothed-code measurements, whereas the KF only uses code during the
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first epoch of a satellite in view. The multipath models associated to our testing

environment used for carrier-smoothed-code and code are described in Appendix G.

For a fair covariance comparison between the LSE and the KF performance, we

assume σ∆GD
= 0 in Equation 7.13 (a different value of alpha will be used in Section

7.3.6).

In this subsection, the performance of the KF algorithm (and its error models)

will be assessed by looking at its PLs, and in particular, the vertical component

(considering aircraft precision approach as a motivating application). For an example

maximum allowable integrity risk requirement value of 10−8, the fault free VPL can

be obtained as:

VPL = 5.73× σD, (7.14)

where σD is the position error standard deviation in the ‘down’ direction computed

by the KF.

Figure 7.2 shows the VPLs obtained over a 4-hour window for both the LSE

(green curve) and the KF (blue curve) systems. The Kalman filter (KF) relies on

raw code measurements to initialize the carrier cycle ambiguities. However, raw code

measurements tend to have a larger variance than the carrier smoothed code used in

the least squares estimator (LSE). As a result, the KF starts off with a slightly larger

covariance during the first few minutes. In general, the KF provides a covariance

envelope that is smaller and smoother than that of the LSE, with an asymptotic

value of around 5 meters. It is worth noting that the KF is less affected by satellites

coming in and out of view compared to the LSE. For example, at times such as

t = 1.5 h and t = 2.8 h, where there are significant variations of several meters in

the LSE, the KF remains relatively stable. It is also evident that the snapshot/LSE

algorithm only sporadically meets the 10-meter AL for precision approach, while the

KF ensures that the VPL remains less than or equal to the AL for most of the 4-hour
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run duration. By reducing the position errors, it is possible to improve the continuity

of the navigation solution for applications with strict requirements, such as precision

approach.

Figure 7.2. KF and LSE/snapshot vertical protection levels

7.3.3 Advantages of KF with Time-Correlated Bounding Models over

Fault-Free LSE ARAIM. In this subsection, we compare the results obtained

from three estimation processes:

• KF with time correlated, bounding error models (as described in Section 7.2):

blue curve.

• LSE with the ARAIM error models (as described in [41–43]) and Appendix G:

red curve

• LSE with the ARAIM error models, but σorb = 1 m: orange curve.

These scenarios enable us to analyze the impact of orbital error models on the current

ARAIM algorithm and observe the performance improvements (in terms of VPLs) for

an ARAIM user when switching from LSE to KF.
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Let us first compare the performance of the KF using the error models pre-

sented in Chapters 3, 4 and 5) with the LSE using the error models used in FF

ARAIM ( [41–43]). Figure 7.2 shows the Kalman Filter (KF) results in light blue and

the Least Squares Estimation (LSE) results in red. The LSE VPLs average around 30

meters and vary significantly as satellites come in and out of view and as line of site

geometries change. Variations can reach tens of meters, such as at t = 1.5 h. These

geometry variations prevent the LSE VPLs from meeting the LPV-200 AL require-

ments of 35 meters during those times. Therefore, the LSE ARAIM algorithm cannot

provide continuity under LPV-200 requirements, while the KF can with significant

margin.

The major difference in these two implementations is in the orbit and clock

error models. For example for GPS, we used our new orbit/clock error model in

the KF, which has a bounding standard deviation of 1.55 m. However, for the LSE

we assumed that estimator uses the GPS broadcast User Ranging Accuracy (URA),

whose value today is, at best, 2.4 m. To verify whether the orbit and clock errors are

an important contributor to the observed performance differences, a third case was

studied using the same ARAIM LSE approach but with σorb = 1 m (which is often

used in ARAIM availability studies in anticipation of possible future reductions in the

GPS broadcast URAs). These results are represented by the orange curve in Figure

7.2. We can see that the VPLs have dropped from the previously observed values,

clearly showing that σorb does have an important impact on the LSE VPLs observed

here.

7.3.4 Sensitivity Analysis. In this section, we analyze the sensitivity of the KF

to the values of the FOGMRP parameters (σx and τx) for each GNSS error. Each

of the FOGMRP parameters described in Table 7.1 are modified one by one by 20%

of their initial value. To investigate the degradation of the KF’s vertical position
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standard deviation, we increase the standard deviations of the FOGRMP errors and

decrease the time constants by 20%. The resulting VPL is denoted as VPL∆20%.

We then compare these results individually to the ”nominal KF” results (denoted as

VPLnom) presented in previous sections. The performance improvement metric used

in this subsection is the following ratio:

q(t) =
VPL∆20%(t)

VPLnom(t)
. (7.15)

In Figure 7.3, the curves with square markers represents the evolution of the

ratio q in Equation 7.15 when the FOGMRP parameters of the orbit and clock model

are modified. The curves with triangle and circle markers are for tropospheric and

multipath models, respectively. Values above 1 correspond to results for which the

20% modification resulted in larger VPLs.

Figure 7.3. Sensitivity to the FOGMRP parameters

The orbit/clock error model is the most sensitive of the three error types.

Increasing σorb by 20% leads to a 10% increase in the KF’s VPL at t = 0 h. The impact

gradually increases as the KF converges (i.e., for t > 30 min), with an asymptotic ratio

of approximately 1.15 (which represents a 15% increase in the KF’s VPL). Among

all the curves shown in this figure, this one has the highest ratio after convergence.
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The second largest impact is observed when the time constant of the orbit/clock error

model is decreased (light blue squared curve for τorb) with a 7% increase of the KF

VPLs at t = 4 h.

Another important impact is observed with the tropospheric model, in par-

ticular with respect to its standard deviation. Additional analysis revealed that the

transient behavior observed at t = 0.5 h is geometry dependent and largely due to low

elevation satellites coming in and out of view. This satellite geometry effect on the

KF output variance becomes negligible once the vertical tropospheric delay state has

become observable: similar geometry variations are present at t = 2.7 h and t = 3.7

h, but these have no impact on q. We also note that the 20% decrease of τT has no

impact on the KF VPL; the ratio q remains equal to 1 throughout the 4 h window.

This is because a modification of the time constant from 20 to 16 hours will not be

noticeable over a 4 hour KF run time.

The least impactful error model is for carrier phase multipath, shown in green.

Modifying the time constant proves to have a negligible impact on the KF VPL, and

modifying its standard deviation results in a small 1% increase in the KF VPL.

Overall, the results in this section show that a user interested in minimizing

the KF output position error variance should focus on tightening the bounds of the

orbit and clock error models.

7.3.5 Advantages of separate, clock based, orbit and clock error models.

The previous section highlighted the importance of tightening the orbit and clock error

model over all other errors. In Chapter 3, we derived tightly bounding error models

for the orbit and clock errors based on the satellite’s clock types: two separate bounds

for GPS’s Rb and Cs satellite clocks, and two other bounds for Galileo’s RAFS and

PHM clocks. In the last section, we used a common error model for all GPS satellites
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and another model common to all Galileo satellites (cf, Table 7.1). In this section,

we analyse the KF performance improvement of when tailored models are used for

the different satellite clock types.

Figure 7.4. Impact of clock-specific orbit and clock error model on KF output stan-
dard deviation

The results in Figure 7.4 shows the VPLs obtained over a example 4-hour run.

The blue curve represents the scenario in which the same FOGMRP model (with

σorb = 1.55 m and τorb = 5.8 h) is used for GPS Rb and Cs satellites and the same

model (with σorb = 0.7 m and τorb = 3 h) is used for the Galileo RAFS and PHM

satellites. The red curve represents the scenario in which orbit and clock errors are

modeled according to the satellite’s clock type: GPS models are separated into a Rb-

specific model (σorb = 1.35 m and τorb = 6.4 h) and a Cs-specific model (σorb = 1.55

m and τorb = 5.8 h), and Galileo models are separated in a RAFS-specific model

(σorb = 0.65 m and τorb = 3 h) and a PHM-specific model (σorb = 0.7 m and τorb = 3

h). By employing clock-specific models, we allow for tighter bounds on the Rb and

RAFS satellites. The tightening of those bounds results in smaller VPLs.

Figure 7.5 shows the standard deviations of the stationary GPS orbit/clock

error datasets used in this work. The x-axis represents the PRN numbers. The

coloring matches the clock coloring of the PSD figures shown in Chapter 3. In Chapter
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Figure 7.5. Standard deviations of stationary GPS datasets (2018-2020)

3, we derived bounding models for Rb and Cs satellites with standard deviations of

1.35 m and 1.55 m respectively. Figure 7.5 shows that these standard deviations do

upper bound the observed sample standard deviations. Looking more closely at the

Rb results, one can notice that the bound is driven by PRN 28. In Appendix I,

we gathered satellite block information for each GPS satellite during the period of

data that was used in the modeling of orbit and clock errors (2018-2020). In that

appendix, we show that the satellite using PRN 28 dates back from 2000. The large

error standard deviation can therefore be explained by the age of the satellite.

Newer Rb satellites (with smaller standard deviations in Figure 7.5) are so far

not taken advantage of in the modeling; they are modeled with the same loose model

as older satellites (e.g., PRN 28). To tighten the orbit and clock error models and

take advantage of recent orbit and clock error improvements, we consider another

option: bounding each satellite individually. The KF output VPLs for this scenario

are represented by the green curve of Figure 7.4. The performance improvement from

tightening the model is noticeable: at t = 4 h, the KF output VPL drops from 5 m

(for the scenario using one bounding model for all satellites in each constellation –

blue curve) to 3.75 m (for the scenario using individual bounds for each satellite –
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green curve).

By reducing the PLs, we produce a system capable of meeting more stringent

AL requirements. However, such individual bounding of orbit and clock errors may

not be practical in terms of implementation. In the following chapter, we will further

discuss possible approaches to tightening the bounds, as well as the limitations of

such approaches.

The previous sections analysed various aspects of the KF-computed vertical

position error standard deviations: how much lower they were compared to LSE’s

and how sensitive they were to their error models. These standard deviations must

now be validated with data. The following section will do so over multiple data sets.

7.3.6 Overall performance of KF with time correlated bounding models.

To verify KF performance we divide 24 hours of data into 80 4-hour sets, shifted

by 15 min intervals. Each data set is processed by the KF described in Section

7.2. Figure 7.6 shows the temporal evolution of the vertical position estimate ϵD

normalized by its associated standard deviation computed by the KF σD. Each data

set is represented in grey, and the red area highlighted in the figure represents the area

for which the normalized error is smaller than 1. The variance of the combined raw

code phase multipath and thermal noise error was inflated by a factor σ∆GD
= 2σρ

in Equation 7.13 to ensure that antenna group delay did not adversely affect carrier

cycle ambiguity initialization. This is the reason the grey curves initially exceed 1.

In total, 98.2% of the error data is within the highlighted bounds, significantly

more than the normal 1-σ expectation of 67%). This confirms (as already suggested)

that the bounding errors models developed in this dissertation can be tightened fur-

ther. Several approaches can be considered to tighten the models:

− Use clock-specific error models (as suggested by the results of Section 7.3.5).
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Figure 7.6. Covariance validation results over 6 sets of 4h

− Consider different model processes rather than FOGMRP (e.g. second order

Gauss Markov processes) to obtain bounds that are closer to the true processes’.

− Leverage newer ephemeris models being broadcast instead of the current L/NAV

broadcast ephemeris models (the ones modeled in Chapter 3).

Each of these solutions will come with their own set of difficulties. The first option

will require the user to know in real time which clock a given satellite is relying

on. The second solution will require a slightly different implementation from the

ones introduced in this chapter and potentially a state augmentation that involves

more variables (therefore increasing computational complexity). The third solution

suggests that the user leverages recently developed C/NAV ephemeris models, which

contain more parameters he current L/NAV message and therefore produce much

smaller orbit and clock errors than L/NAV. This solution requires that future ARAIM

users rely only on C/NAV messages over the current L/NAV messages.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Integrity concerns are at the center of safety critical applications and have

pushed the GNSS community to develop integrity-focused algorithm such as ARAIM.

Considerable efforts have been made to achieve the stringent requirements of verti-

cal guidance (LPV-200). But under depleted constellation conditions, LPV-200 was

can only sparsely be achieved [7]. To alleviate these limitations, this dissertation

introduced and developed an alternative approach to ARAIM: recursive ARAIM.

8.1 Summary of accomplishments

The focus of this thesis has been on the development of a methodology for

high integrity, time correlated error modeling. Power spectral density bounding has

been at the center of this thesis and was adapted to the more common but also more

challenging cases of non-stationary errors. More details on these various areas of

contributions are discussed in the following subsections.

8.1.1 Developing a methodology for high integrity, time correlated error

modeling. The core concept of PSD bounding was first brought to light by Langel et

al. [11] but was restricted to stationary data. In practice, the discrete and finite nature

of most data sets makes it almost impossible to guarantee its stationarity. Therefore,

this dissertation developed an error classification, based on the “type” of stationarity

observed in the data, as well as its PSD’s characteristics (time dependency). The

PSD bounding method was then adapted for each error category.

8.1.2 Developing high integrity, time correlated GNSS and INS error

models.
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8.1.2.1 Orbit and clock errors. The orbit and clock errors of GPS and Galileo

satellites were developed (over 2018-2020) and their characteristics were analyzed.

In particular, the clear difference of the Rubidium clock satellites versus the Cesium

ones was brought to light. These differences led to the development of clock-specific

error models for the two constellations: a Rubidium model and a Cesium model for

GPS, and a RAFS model and a PHM model for Galileo.

8.1.2.2 Tropospheric delay. The residuals of two separate models were analyzed

in this thesis (the MOPS model and the GPT2w model) at 100 stations worldwide

with data from 2018. Both models showed their limitations during tropospheric

storms but, unlike the MOPS model, the GPT2w proved capable of properly modeling

yearly variations of the tropospheric delay (such as the monsoon season in India). The

GPT2w model also performed better worldwide and showed centimeter to millimeter

level yearly biases in their residuals. The MOPS model, however showed that certain

parts of the world were impacted by yearly biases that could reach up to 12 cm.

Both models’ residuals were converted to the frequency domain and upper bounded.

However, to simplify the KF implementation of this thesis and not have to model a

bias separately, this section concluded with the recommendation of using the GPT2w

model for better performance.

8.1.2.3 Carrier phase multipath. Carrier phase multipath was characterized

using the difference of two frequency carrier phase measurements. The remaining

term was impacted by ionopsheric delay that needed to be extracted as well. Because

the frequency characteristics of multipath and ionospheric delay are so different from

one another, the ionospheric component was removed using high pass filtering. An

in depth analysis of the cut of frequency chosen for filtering was performed as well,

so as to ensure that the final residuals would only contain carrier phase multipath.

The PSD bounding methodology was then applied to the carrier phase multipath
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measurements of our testing environment, and resulted in a model comprised of a

FOGMRP and a WN.

8.1.2.4 Inertial errors. For unstable errors such as inertial errors (i.e. their

flicker noise), the ACF and PSD vary with time, making it impossible to apply the

FT methodology used for other errors. Instead, the PSD bounding approach was

modified to use the periodogram function.

8.1.3 Leveraging AV data to provide high integrity, time correlated inertial

error models. The low quality of the periodogram estimate often results in an

overly conservative model. A second approach was introduced which leveraged the

high quality AV curves often provided by inertial manufacturers and revolved around

the concept of Allan Variance bounding. Our work revealed the inability to produce

high integrity error models using AV curves alone. This information had never been

brought to light in the past. To ensure the integrity of a model derived through AV

bounding, additional criterion on the final error model were introduced.

8.1.4 Implementing recursive ARAIM with high integrity, time correlated

error models.

8.1.4.1 Highlighting the advantages of KF over LSE. The output of the

KF was compared to that of the LSE approach. The KF output standard deviation

was shown to be much smaller (by a factor of 5) and much less impacted by satel-

lite coming in and out of view than the LSE output. This observation reinforced

the argument for this dissertation: recursive ARAIM could help lower achieve more

stringent requirements by lowering the protection levels of the system.

8.1.4.2 Analysing the sensitivity of recursive ARAIM to its error models.

A sensitivity analysis revealed that variations in the orbit and clock error model

impacted the KF output the most. Therefore, to lower the KF output, one must
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ensure its orbit and clock error model is as tight as possible.

8.1.4.3 Investigating the performance improvement of clock-specific orbit

and clock error models. Based on the conclusions of the previous subsection, an

analysis was performed in which several KF were run with various orbit and clock

error models (for the loosest to the tightest):

(a) Each constellation (GPS and Galileo) uses their own model,

(b) Each constellation separate their models into two, clock specific models: Rb/Cs

for GPS and RAFS/PHM for Galileo,

(c) Each satellite has its own error model.

This analysis revealed important performance improvement from tightening orbit and

clock models. Tightening the models from (a) to (b) resulted in a KF output VPL

drop from 5 m to 3.75 m (after convergence). But individual satellite clock bounding

is not as straight forward as option (a) and (b) would be. Implemementing this

in ARAIM would require core changes to the ARAIM algorithm such as a modified

dissemination strategy (ISM would need to be much larger — Integrity Support Data?

— to account for each satellite’s model). Additionally, the dilemma of integrity versus

age of data arises: to bound satellites individually, several years of data would need to

be gathered so as to ensure (1) the accuracy of our PSD estimate (as currently done

in this work), and (2) a good historical representation of what this satellite’s errors

have looked like. Recent upgrade to the GPS constellation have led to a decrease in

the GPS orbit and clock errors. Modeling those errors with recent satellites would

result in lower/tighter orbit and clock satellite bounds, but would also result in much

shorter data length. This dilemma will need to be taken into consideration in future

work.
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8.2 Recommended topics for future research

A number of recommendations for future work are given in the following sub-

sections to enhance the performance of recursive ARAIM, and bring it to more realistic

scenarios.

8.2.1 Development of tighter orbit and clock error bounds using C/NAV

broadcast ephemeris. The modeling done in this work regarding orbit and clock

error has proposed several approaches to reduce the orbit and clock error model of

current L/NAV broadcast ephemeris errors. The bounds obtained here are believed

to be close to the lowest possible whether when modeled per constellation, or per

clock and constellation. For applications with more stringent requirements, one may

consider modeling the orbit and clock errors to the C/NAV model. The C/NAV

model is a more recent orbit and clock error model which contains more ephemeris

parameters than the current L/NAV model and therefore shows promising results.

Modeling its errors could result in much lower error bounds, at the expense of much

less historical data.

8.2.2 Recursive ARAIM under faulted assumption. The first step in demon-

strating the need for recursive ARAIM was to assess its performance in fault free

conditions. This dissertation did that. Future work would now benefit from investi-

gating the performance of recursive ARAIM under (more realistic) faulted conditions

so as to address other performance metrics: continuity and availaibity.

8.2.3 Inertial-aided recursive ARAIM for continuity. Finally, in this dis-

sertation, we introduced a methodology to model inertial errors. Applications with

restricted geometry (such as driver-less vehicle navigation through urban canyon)

would highly benefit from inertial measurements. Inertial-aided recursive ARAIM for

autonomous vehicle navigation could greatly improve the continuity of the navigation
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system while maintaining ultra tight integrity requirements.
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APPENDIX A

EPHEMERIS INTERPOLATION



130

Figure A.1. GPS and Galileo Ephemerides Interpolation Diagram

GPS satellites typically broadcast a new set of ephemerides every 2 hours.

Each set is valid for at least 4 hours. Hence, when a new set of ephemerides is

received, the previous one is still valid for another 2 hours. Section 2.3 shows that

ephemeris updates introduce jumps in the orbit and clock errors.

If we were to account for the jumps in a batch or KF implementation, we

would need to model their dynamic behavior, which would require a cumbersome

hybrid continuous/discrete process model. Since smoother dynamics are more conve-

nient to model, and since we would ideally, for ease of implementation, like to model

errors using simple models (e.g., as FOGMRP), we instead use interpolated broadcast

ephemerides.

A.1 GPS ephemeris interpolation

GPS ephemerides are valid for (at least) 4 hours - 2 hours before and after the

specified ‘time of ephemeris’ (toe). A new set of ephemerides is normally received by

the receiver every 2 hours. When the new set is received, the current one is still valid

for some time (2 hours after toe [28]). Users who are not concerned with stochastically

modeling ephemeris error would typically decide to use the new one immediately.

However, our goal is to produce such a model, so we instead interpolate the current

(Xcur) and next (Xnext) sets of ephemerides in the position and velocity domains over
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a window Wint of 2 hours. This interpolation is represented in Figure A.1, where

the blue curves are the original, non interpolated ephemerides and the green curve

represents the interpolated portion, during the time where both ephemerides are valid.

The equation describing this interpolation is:

X̂(t− τ) =
τ

Wint

Xnext(t− τ) +
Wint − τ

Wint

Xcur(t− τ) (A.1)

where:

X̂ is the interpolated output

Wint is the interpolation window

t is the time of the jump between Xcur and Xnext

τ is a dummy variable within the interpolation window: τ ∈ [0 : Wint]

Figure A.2. GPS PRN07 Ephemerides Interpolation

Figure A.2 shows the radial errors of GPS PRN07 in December 2018. The

focus is on the ”ephemeris jump” occuring at t = 2 hours. The blue dashed curve

represents the set of ephemeris currently in use and whose toe is t = 0 hours. The

black dashed curve represents the set of ephemeris that was just received by the user,

whose toe is at t = 2 hours, but whose validity window starts at t = 0 hours. The
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green curve represents the result of their interpolation between t = 0 and 2 hours. At

t = 0 hours, the user is currently using the blue set but has just received the black one

as well; the interpolation begins at this point. At t = 1 hour, both sets are equally

weighted to generate the interpolated curve (green). At t = 2 hours, the current set

time of applicability has expired, and the user is now using 100% of the new set.

A.2 Galileo ephemeris interpolation

Galileo ephemerides are valid for 4 hours after the toe, which in this case also

represents the time of reception of the new ephemeris. Therefore, the interpolation

process is slightly different than for GPS. It is expressed with the following formula:

X̂(t+ τ) =
τ

Wint

Xnext(t+ τ) +
Wint − τ

Wint

Xcur(t+ τ) (A.2)

where the interpolation window is now defined (in minutes) as:

Wint = 180× 60− (toe2 − toe1) (A.3)

Note that Galileo’s interpolation window is different to cope with the fact that

the broadcast rate isn’t necessarily fixed and can be as short as 10 min. Additionally,

unlike GPS, the toe is located at the beginning of validity period (see [62] Section

C.4.4.1. page 41).
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APPENDIX B

VARIANCE OF AUTOCORRELATION ESTIMATES
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Let us define the autocorrelation estimate of a random process X(t) as:

R̂X(t) = RX(t) + δRX(t) (B.1)

where RX(t) is known and δRX(t) is unknown. In the following we derive an approx-

imate expression for the variance of autocorrelation estimate R̂X(t).

Reference [15] Chapter 8, Section 8.4, Equation (8.103) shows that the variance

on the ACF estimate R̂X can be expressed as:

σ2
R̂X(t)

=
1

T

∫ +∞

−∞
R2

X(ξ) +RX(ξ + t)RX(ξ − t)dξ (B.2)

Approximating that the errors are derived from a zero-mean, FOGMP, the parent

autocorrelation function can be expressed as:

RX(ξ) ≈ σ2
Xe

−|ξ|/τ . (B.3)

Substituting Equation B.3 into Equation B.2 and solving the integrals, we obtain:

σ2
R̂X(t)

≈ σ4
X

T
(τ + (τ + 2t)e−2t/τ ). (B.4)
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APPENDIX C

SENSITIVITY OF PSD ESTIMATION TO PARAMETER SELECTION
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The PSD estimation method used in this paper is described in [11] and relies

on a tapering window applied to the ACF of the errors prior to the Fourier trans-

form computation. The tapering window, as described in Section 4.2, relies on two

parameters: T1 and T2. On top of that, the length of data T plays an important role

in the PSD estimation process, since it will drive the ACF accuracy. Hence, when

estimating PSDs, we need to take into account all three time parameters: T1, T2, and

T . In this Appendix, we analyze the sensitivity of the PSD estimation process to our

choices of T1, T2, and T .

In Section 3, we showed that the parameter T influences the overall accuracy

of the ACF estimate. Since the PSD estimation approach chosen here relies on first

estimating error ACFs, the same conclusion applies: the longer the data, the more

accurate the ACFs, and hence, the more accurate the PSD estimate will be. Therefore,

using as much data as possible would be ideal (i.e., 1 year). Note however, that the

choice of T will be entirely determined by the stationarity tests. For this analysis, we

assume an ‘average’ value T = 6 months.

Additionally, we know that the T1 parameter represents the lag values until

which the ACF will remain unchanged. In our case, because a satellite pass lasts

about 7 hours maximum, it is in our best interest to not modify correlation values

during that period of time. We therefore choose T1 = 7 hours.

The only parameter left to analyse is T2, which will define how rectangular

the tapering window will be. If T1 and T2 are close to each other, the window will

be nearly rectangular, and it will result in spectral leakage in the frequency domain,

decreasing the quality of our PSD estimate. Example windows are represented in

Figure C.1. The following section analyzes the impact of different T2 values on the

PSD estimate of a FOGMRP process.
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Figure C.1. Example tapering windows used in the PSD estimation process

C.1 Impact of the window shape on a FOGMRP PSD estimate

Let us begin by looking at the impact of various tapering windows on the PSD

estimate of a first-order-FOGMRP. For that, we generated 6 months of FOGMRP

data at a 30 sec sampling rate, with a time constant of 6 hours and a standard devi-

ation of 1.5 m. Because we know the theoretical expression of a FOGMRP PSD, we

can compare it to the various PSD estimates. Figure C.2 shows the PSD estimates

using the various tapering windows represented in Figure C.1. The red dashed curve

represents the theoretical PSD curve of a FOGMRP. The grey curve represents the

PSD estimate obtained when using a rectangular window (T1 = T2 = 7 h). Rect-

angular windows are known for inducing spectral leakage in the frequency domain.

At high frequencies (right part of the plot), the spectral leakage induce a divergence

of the PSD estimate from the true PSD curve. We can see that the more T2 is in-

creased, less spectral leakage is visible (bumpiness of the curves) and the closer the

PSD estimates get to the true FOGMRP PSD curve.

These results suggest that PSD estimates with increasing T2 will converge to

the true FOGMRP PSD curve. To test this theory, Figure C.3 shows PSD estimates
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Figure C.2. Impact of tapering window on PSD estimate of FOGMRP in terms of
spectral leakage: (a) original figure, (b) zoomed.

using tapering windows whose T2 values range from 24h to 1 month of data. Be-

yond a certain length of time for T2, the curves can be seen to become noisier at all

frequencies. We observe that the ACF from which the PSD is derived also becomes

noisier for large values of T2.

The results of this section suggest that T2 = 48h is an ideal value for the PSD

estimation of a FOGMRP.

Figure C.3. Impact of tapering window on PSD estimate of FOGMRP in terms of
data noise: (a) original figure, and (b) zoomed.

C.2 Impact of the window shape on real orbit and clock error data
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In this section, we verify that this theory applies to the orbit and clock errors

using an example dataset of PRN 01 for 2018.

Figure C.4. (a) Tapered ACF and (b) PSD estimates for GPS PRN 01 orbit + clock
errors.

The grey curve of Figure C.4 (b) shows the PSD estimate of this data set with

T1 = 7h and T2 = 48h, as suggested by the analysis in Section C.1. If we were to

upper bound this curve with a FOGMRP (see Chapter 2), the associated sigma would

have to be inflated to upper bound the frequency bump observed at f = 2.4 × 10−5

Hz. That frequency is equivalent, in the time domain to a period of 11.5 hours. Note

that GPS satellites have an orbit period of half a sidereal day (23h 56m 4s) and will

therefore take about 11.9 hours to orbit the earth. Note also that this orbital period

can be observed on the grey ACF curve in Figure C.4 (b). The grey curve represents

the tapered ACF of the data set, with T1 = 7h and T2 = 48h. Therefore, the ACF

lobe located at the 11.9 hour time lag is barely tapered and will result, in the PSD

domain, in a frequency bump that will drive the PSD bounding process.

Since a satellite pass lasts 7 hours at the maximum, tapering the ACFs after

this time lag will not impact the robustness of our model. Smaller T2 values will

result in an attenuated orbital period frequency bump, and therefore a better, less

conservative, PSD bounding model.
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Therefore, any 14h ≤ T2 ≤ 48h would ensure limited spectral leakage and

noise, but to reduce the impact of the orbital period on our PSD estimate, smaller

T2 values should be prioritized.

To definitely select the ideal value of T2 an additional layer of optimization

will be taken into consideration: optimal FOGMRP bound. This work is done in

Appendix H.
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APPENDIX D

NUMBER OF INDEPENDENT SAMPLES IN A FOGMRP
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Let us define a stationary, ergodic random process x(t) with sample mean

µ̂x and variance σ̂2
x based on a data set of time duration T . Let us call Cxx the

autocovariance function of the random process x(t). Assuming the process is zero

mean, Chapter 8 of [15] provides a closed form equation of the mean square errors of

µ̂x and σ̂2
x as:

V ar[µ̂x] =
1

T

∫ T

−T

(
1− |η|

T

)
Cxx(η)dη (D.1)

V ar[σ̂]
x =

2

T

∫ T

−T

(
1− |η|

T

)
C2

xx(η)dη (D.2)

Let us now assume that x(t) is a zero-mean, FOGMRP with time constant τx

and standard deviation σx. Its autocovariance function is expressed as:

Cxx(η) = σ2
xe

−|η|/τx (D.3)

Replacing this term in Equation (D.1), and exploiting the symmetry of the

autocovariance function, we have:

V ar[µ̂x]

σ2
x

=
2

T

∫ T

0

(
1− η

T

)
e−η/τxdη (D.4)

After direct integration of the first term and integration by parts of the second

term, Equation (D.4) simplifies to:

V ar[µ̂x]

σ2
x

=
2τx
T

{
1− τx

T

(
1− e−T/τx

)}
(D.5)



143

Similarly, substituting Equation (D.3) into Equation (D.2), and considering

the zero mean assumption stated above, we have:

V ar[σ̂2
x]

σ4
x

=
4

T

∫ T

0

(
1− η

T

)
e−2η/τxdη (D.6)

After direct integration of the first term and integration by parts of the second

term, Equation (D.6) simplifies to:

V ar[σ̂2
x]

σ4
x

=
2τx
T

{
1− τx

2T

(
1− e−2T/τx

)}
(D.7)

In this work, we are looking at a year’s worth of data and time constants shorter

than one day, so we can neglect the terms of order (τx/T )
2 and higher. Equations

(D.5) and (D.7) become:

V ar[µ̂x]

σ2
x

≈ V ar[σ̂2
x]

σ4
x

≈ 2τx
T

(D.8)

Therefore, we conclude that any zero mean FOGMRP with τx/T ≪ 1 has

effectively independent samples every 2τx.
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APPENDIX E

ONE-TO-ONE MAPPING ANALYSIS OF INERTIAL ERRORS
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This appendix provides a short overview of each error term in Equation ??

and shows that an upper bound in the AV domain is an upper bound in the PSD

domain.

E.1 Velocity random walk modeled as a white noise

Let us define Σ
2

WN (or ∆N0) as an AV upper bound on the actual white noise’s

AV, such that:

Σ
2

WN(τ) =
N0

τ
=
N0 +∆N0

τ
>
N0

τ
= Σ2

WN(τ) ∀τ ∈ R+ (E.1)

Clearly, this is equivalent to:

N0 > N0

White noises can be expressed in the PSD domain as:

SWN =
N0

2

And it is therefore trivial to prove that the condition in Equation E.1 auto-

matically implies:

SWN =
N0

2
>
N0

2
= SWN (E.2)

The reverse implication is trivial as well.

E.2 Acceleration random walk modeled as a random walk

Similarly, let us define an AV upper bound on the random walk error term K

as:

Σ
2

RW (τ) =
K

2
τ

3
=
K2 +∆K2

3
>
K2τ

3
= Σ2

RW (τ) ∀τ ∈ R+ (E.3)

For this condition to be valid over all τ ∈ R+, we must have:

K
2
> K2
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Which in turns, is equivalent to an upper bound in the PSD domain:

SRW (f) =
K

2

(2πf)2
>

K2

(2πf)2
= SRW (f) ∀f < fN (E.4)

E.3 Flicker noises modeled as a first order GMRP

Let us consider a flicker noise bound Σ
2

F in the AV domain, on the true flicker

noise error AV Σ2
F , such that:

Σ
2

F (τ) =
2σ2

F

π
ln(2) >

2σ2
F

π
ln(2) = Σ2

F (τ) ∀τ ∈ R+ (E.5)

Since every terms in that equation are scalar, it is trivial, once again, to show

that the bounding is verified in the PSD domain as well:

SF (f) =
σ2
F

2πf
>

σ2
F

2πf
= SF (f) ∀f < fN (E.6)

However, it is important to note that flicker noise cannot be modeled in the

state space domain. Instead, first order GMRP are often used to model flicker noises.

To satisfy the integrity requirements of safety critical applications, this first order

GMRP
(
SG

)
will have to upper bound the flicker noise:

SG(f) > SF (f) > SF (f) ∀f < fN (E.7)
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APPENDIX F

IONOSPHERIC DELAY CUT OFF FREQUENCY VALIDATION
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The methodology introduced in this thesis to characterize carrier phase mul-

tipath relies on the differencing of carrier phase measurements from two distinct

frequencies. The resulting residuals are then filtered out using a high pass filter with

cut off frequency fc. This cut off frequency was carefully selected so as to remove the

ionospheric delay from the residuals. However, more work needs to be done to ensure

that this choice of fc will not impact the filtered residuals (i.e. multipath). In other

words, does the high pass filtering of the L1 − L2 residuals also removes some of its

multipath?

In this appendix, we validate the choice of fc and prove that the amount

of carrier phase multipath removed during the filtering of the L1 − L2 residuals is

negligible.

F.1 Mathematical representation of multipath

Let us consider the two most common reflection scenarios: ground and side/wall

reflections.

Figure F.1. Ground Reflection
Figure F.2. Wall Reflection

F.1.1 Modeling of ground-induced multipath. Let us assume the following

scenario (represented in Figure F.1 from [63]):
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• the GNSS antenna is located at an height h from the ground,

• the reflected signal arrives with an incidence angle θ.

The reflected signal travels an extra distance (∆ = ∆1 − ∆2 in Figure F.1)

with respect to the line of sight signal, which results in a phase shift that will directly

impact the carrier phase measurement received (and later processed) by the user.

By simple trigonometric manipulation
(
e.g. cos (2θ) =

(
1− 2sin2θ

))
, the extra

distance travelled by the signal can be expressed as ( [63]):

∆ = ∆1 −∆2, (F.1)

=
h

sinθ
(1− cos (2θ)) ,

= 2hsinθ.

To express this extra travelled distance in cycles (let us call it ψ), we simply

divide Equation F.1 by the wavelength λ of the incoming signal:

ψ = zsinθ, (F.2)

where z = 2h
λ
.

F.1.2 Modeling of wall-induced multipath. Let us now consider the case of

multipath induced by a wall reflection, as represented in Figure F.2, with the following

properties:

• the GNSS antenna is located at a distance d from the reflecting wall,

• the reflected signal arrives with an incidence angle θ.

In this case, the extra travel distance of the reflected signal can be expressed
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as:

∆ = ∆1 +∆2, (F.3)

=
d

cosθ
(1 + cos (2θ)) , (F.4)

= 2dcosθ. (F.5)

In this case, the extra travelled distance in cycles is expressed as:

ψ = zcosθ, (F.6)

where z = 2d
λ
.

Equations F.2 and F.6 are mathematical expressions of the additional travel

distance of a reflected signal, in cycles. In this work, we focus on carrier phase

measurements. It is therefore of great interest to express the impact ψ will have

on the carrier phase measurement ϕ. Let us denote this added contribution as δϕ.

The in-phase versus quadrature-phase representation of a reflected signal is shown in

Figure F.3 from [63].

Figure F.3. Complex representation of direct VS reflected signal.
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By simple trigonometric manipulation, one can derive the following expression

for δϕ:

tan (δϕ) =
αsinψ

1 + αcosψ
, (F.7)

where α is the relative magnitude of the reflected signal.

Since the reflected signal’s magnitude is always smaller than the direct signal’s,

we are faced with two possible cases:

Case 1:

The reflected signal’s amplitude is much smaller than the direct signal’s amplitude:

α ≪ 1.

In this case, Equation F.7 can be simplified with:

tan (δϕ) ≈ δϕ ≈ αsinψ. (F.8)

Given the expressions of ψ derived above, this equation can be expanded using

the Jacobi-Anger expansion:


sin (xcosy) = −2

∞∑
n=1

(−1)nJ2n−1(x)cos ((2n− 1) y)

sin (xsiny) = 2
∞∑
n=1

J2n−1(x)sin ((2n− 1) y)

(F.9)

where Ji is the i
th order Bessel function.

Applying this expansion to Equation F.8 for the two reflection scenarios in-

troduced in Sections F.1.1 and F.1.2 yields:
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Ground : δϕ ≈ αsin (zcosθ) = 2α

∞∑
n=1

J2n−1(z)sin ((2n− 1) θ)

Wall : δϕ ≈ αsin (zsinθ) = −2α
∞∑
n=1

(−1)nJ2n−1(z)cos ((2n− 1) θ)

(F.10)

Case 2:

The reflected signal’s amplitude is smaller but not negligible compared to the the

direct signal’s amplitude: α < 1.

Let us apply Taylor series expansion to both sides of Equation F.7:

δϕ+O
(
δϕ2

)
≈ αsinψ

(
1− αcosψ +O

(
α2

))
(F.11)

Simplifying and dropping 3rd order terms yields:

δϕ ≈ αsinψ − α2

2
sin (2ψ) . (F.12)

Applying the Jacobi-Anger expansion in Equation F.9, and simplifying the

notations produce:
Ground : δϕ ≈ α

∞∑
n=1

(2J2n−1(z)− αJ2n−1(2z)) sin ((2n− 1) θ)

Wall : δϕ ≈ −α
∞∑
n=1

(2J2n−1(z)− αJ2n−1(2z)) (−1)n cos ((2n− 1) θ)

(F.13)

Let us call fg the frequency at which the receiver’s environment/geometry

changes. By scaling the integer term 2n − 1 of the expansion of δϕ by fg, we can

observe the frequency distribution of δϕ.

We have now derived expressions for δϕ for both of the multipath scenarios

considered here. These expressions can help us understand the power distribution of
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carrier phase multipath, and, by doing so, validate the ionospheric cut-off frequency

derived in this work. Let us apply these to two types of multipath datasets.

F.2 Validation of the cut off frequency for rooftop multipath

In Chapter 5, carrier multipath models were derived for the multipath envi-

ronment on the rooftop of the Rettaliata Engineering Building, where most of our

experimental data is collected. More details on the environment are provided in this

Chapter.

Figure F.4. Bessel approximation of ground (left) and wall (right) reflection power
distribution

The data collections performed in this environment are static, therefore, the

rate of change of the multipath environment is directly related to the periodicity of

the GNSS constellation. The GPS constellation has a periodicity of half a sidereal

day (86164.0905 seconds), therefore, fg =
2

86164.0905
Hz.

Additionally, the GNSS antenna is located 1 m above the ground (i.e. h = 1

m), and the nearest horizontal blockage is 25 m away (i.e. d = 25 m).

Figure F.4 represent the power distribution of δϕ for both Cases 1 and 2
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introduced above, in the ground (left) and wall (right) reflection cases. Note the

similarity of results between Cases 1 and 2, suggesting that the second order terms

present in Case 2 are negligible. The shaded grey area represents the portion of power

that would be removed by filtering with fc. For the wall reflection case, 11.4% of the

multipath’s power is filtered out. For the ground reflection case, however, 100% is

filtered. Two possible interpretation can be made:

(i) The Bessel derivation needs refinement (in particular for ground reflections), or,

(ii) The L1 - L2 ionospheric delay filtering methodology is not appropriate for this

multipath environment, since ionospheric delay and ground multipath seem to

share their frequency band.

Future work would benefit from investigating this issue further.

F.3 Validation of the cut off frequency for Aircraft Multipath

Figure F.5. Bessel approximation of spiral divergence (left) and phugoid (right) modes
power distribution

Contrary to static receivers, the carrier multipath geometry observed in-flight

aircraft will primarily depend on the flight mode of the aircraft which varies at a
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faster rate than the GNSS geometry. Figure F.6, from [63] represents the various

flight mode that a receiver could experience. Let us focus here on the phases of flight

with the fastest geometry variations: phugoid and spiral divergence modes.

Assuming a Boeing 747-200, Figure F.5 shows the bessel analysis results for

wall reflections with d = 40 m (during the spiral divergence phase - left), and ground

reflections with h = 15 m (during the phugoid phase - right). The shaded grey area

representing the portion of power that would be removed by filtering with fc is barely

visible on both plots. For the spiral divergence case, 0% of the multipath’s power is

filtered out. For the phugoid case, 0.5% is filtered out, suggesting that the filtering of

the ionospheric delay will not impact the quality of the remaining multipath residuals.
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APPENDIX G

SNAPSHOT ERROR MODEL OF THE CODE AND CARRIER SMOOTHED

CODE MULTIPATH OF OUR TESTING ENVIRONMENT
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In Chapter 7 of this thesis, the error models derived in the previous chapters

are put into use in a Kalman Filter version of ARAIM. This KF’s performance is then

compared (among other things) to the performance of snapshot ARAIM [41–43]. If

most error models used in the KF have been thoroughly derived and described in this

thesis, there remain one that still need to be addressed: code multipath. In Chapter

7, we explain that code measurements are used at the first epoch of a satellite in view

to help with the initialization of the cycle ambiguities. We therefore need a snapshot

model for these errors as well, one that will be specific to the environment in which the

experiments are performed (i.e. the rooftop of the Rettaliata Engineering building).

To do so, we collected code and carrier measurements over ten days. Code and

Carrier Smoothed Code (CSC) measurements were extracted and processed to pro-

duce their respective multipath errors. Note that code measurements are impacted

by group delays. These errors are deterministic processes but are environment de-

pendent and difficult to calibrate. They are also difficult to extra and differentiate

from multipath errors. The “multipath residuals” modeled here also include group

delays. However, residual group delay errors that cannot be modeled will need to be

accounted (see Chapter 7).

The datasets are then divided in 5 degree elevation and 10 degree azimuth

bins. Standard deviations are computed for each of those bins. They are the results

presented below.

The grey points on the left plot of Figure G.1 represents the code multipath

standard deviation (y-axis) with respect to satellite elevation (x-axis). An elevation

dependent trend can quite clearly be observed, where low elevation satellites produce

multipath which is much larger than than the high elevation ones. Similarly, the

grey points on the right plot of Figure G.1 represents the CSC multipath standard

deviation.
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Figure G.1. Rooftop multipath

To have a comparison of the multipath observed on the rooftop and the one

usually observed in aircrafts, the blue curve on each of those plots represent the

multipath model used in ARAIM (see [1], [7]). We can see that the rooftop experiences

much larger multipath values, especially at low elevations.

The model chosen for code ρ and CSC ρ̃ multipath are represented in red.

They are obtained with the following elevation-dependent polynomials:

σρ/ρ̃ = Pρ/ρ̃(1)θ
3
i + Pρ/ρ̃(2)θ

2
i + Pρ/ρ̃(3)θi + Pρ/ρ̃(4), (G.1)

where Pρ = [−3.865× 10−6, 3.550× 10−4, −7.559× 10−3, 0.6423]

and Pρ̃ = [−3.81× 10−6, 6.155× 10−4, −0.0325, 0.749].

These models will be used in Chapter 7 during the performance evaluation of

recursive ARAIM.



160

APPENDIX H

PSD BOUNDING OPTIMIZATION: CHOOSING THE BEST TAPERING

WINDOW AND FOGMRP BOUND FOR A GIVEN DATASET
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In Chapter 2, we introduced a PSD estimation, and bounding methodology

which follows the following steps:

→ Estimate the ACF of the dataset x: Rx(τ)

→ Apply a tapering window Γ(τ, T1, T2) to Rx(τ) to obtain a modified ACF: R̃x(τ)

→ Take the Fourier transform of the modified ACF, and obtain a modified PSD:

Sx(f)

→ Bound Sx(f) with a FOGMRP (parameters τx and σx): S̄x(f) =
2σ2

x/τx
1/τ2x+4π2f2

To minimize our final bound S̄x(f), while ensuring the model is bounding, we

want to optimize of parameters T1, T2, σx and τx, such that our final bound is as low

as possible. The term “optimized” is employed here to refer to the value within a

search space for which the space between the sample PSD curve and the PSD bound

is minimized. Secondary optimization rule will attempt to minimize the σ parameter

of the resulting FOGMRP bound, and finally maximize its time constant τ .

Figure H.1. ACF tapering window representation
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Let us divide the problem in two parts. First, the tapering parameters T1

and T2 need to be selected so as to minimize spectral leakage and obtain the PSD

with the lowest variance possible (and eventually minimize the bound in the next

step). Second and last, we find the optimal model S̄x(f) which tightly upper bounds

a sample PSD Sx(f) obtained with the previously derived tapering window. In other

words, we want to find σx and τx that minimize |S̄x(f) − Sx(f)| while verifying the

constraint S̄x(f)− Sx(f) > 0 ∀f .

As detailed in Chapter 2 and represented in Figure H.1, T1 is the value for

which ACF values associated to lag time τ ≤ T1 remain unchanged by the tapering,

and T2 is the value for which ACF values associated to lag time τ ≥ T2 are set to

zero. Spectral leakage is introduced in the PSD estimation process when the window

is rectangular (i.e. T1 = T2). To reduce spectral leakage, it is therefore in our best

interest to choose T1 and T2 as far apart as possible. But choosing a value of T2 that

is too large will also introduce unnecessary noise in the PSD and increase the overall

value of the PSD estimate, and hence its final bounding.

Additionally, for each of the errors presented in this dissertation, the value of

T1 will already be known. For orbit and clock errors and multipath, the user will not

observe correlation times that are longer than one satellite pass (i.e. 7 hours). For

tropospheric delay, the user will be limited to the mission duration (for aviation, the

longest flight lasts 18 hours). Therefore, the optimization presented in this Appendix

focuses on only three parameters: T2, σx and τx.

In this Appendix, we take an example data set: the orbit and clock errors of

GPS PRN 24 over the years 2018-2020. The tapering window results obtained in this

Appendix are general and can/will be used for the other errors as well.

Optimization results are shown in Figure H.2. To limit the amount of figures
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shown here, only 6 values of T2 (and their associated optimized FOGMRP bound)

are represented here. Those values have been chosen to represent the general trend

observed while changing T2, and include the optimal T2, σx and τx values associated

with this dataset. Figure H.2 shows that the lowest σ is 1.55 meters and is obtained

for T2 between 20 − 22 hours. More values of T2 were tested, but only a few are

represented here. To select which value of T2 is truly optimal, we direct the reader

to the results observed in the sensitivity analysis of Chapter 7. In this appendix, the

sensitivity of the KF’s standard deviation to its error model’s parameters is analyzed

and revealed that higher FOGMRP time constant values should be prioritised in order

to decrease the KF’s standard deviation. Note that this last comment is specific to

the KF designed in this dissertation and is not necessarily true for all KFs.

Therefore, the optimal tapering and bounding values of the GPS orbit and

clock errors of GPS PRN 24 are T1 = 7 hours, T2 = 22 hours, σx = 1.55 meters, and

τx = 5.8 hours.
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APPENDIX I

GPS AND GALILEO SATELLITE INFORMATION DURING 2018-2020
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This appendix summarizes the block information of each GPS and Galileo

satellite used over the period of date used in the modeling of orbit and clock errors

in Chapter 3 (2018-2020). The dates used here will help us understand the overall

bounding values obtained in this chapter and how those values could be tightened.

Table I.1. GAL Block information between 2018 and 2020

PRN Block Date Start

1 GALILEO-2 2016/5/24

2 GALILEO-2 2016/5/24

3 GALILEO-2 2016/11/17

4 GALILEO-2 2016/11/17

5 GALILEO-2 2016/11/17

7 GALILEO-2 2016/11/17

8 GALILEO-2 2015/12/17

9 GALILEO-2 2015/12/17

11 GALILEO-1 2011/10/21

12 GALILEO-1 2011/10/21

13 GALILEO-2 2018/7/25

14 GALILEO-2 2014/8/21

15 GALILEO-2 2018/7/25

PRN Block Date Start

18 GALILEO-2 2014/8/21

19 GALILEO-1 2012/10/12

20 GALILEO-1 2012/10/12

21 GALILEO-2 2017/12/12

22 GALILEO-2 2015/3/27

24 GALILEO-2 2015/9/11

25 GALILEO-2 2017/12/12

26 GALILEO-2 2015/3/27

27 GALILEO-2 2017/12/12

30 GALILEO-2 2015/9/11

31 GALILEO-2 2017/12/12

33 GALILEO-2 2018/7/25

36 GALILEO-2 2018/7/25
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Table I.2. GPS Block information between 2018 and 2020

PRN Block Start End

1 IIF 2011/7/16

2 IIR-B 2004/11/6

3 IIF 2014/10/29

4 IIR-M 2017/12/1 2018/9/28

IIA 2018/10/10 2019/1/2

IIIA 2019/1/9 2019/7/12

IIA 2019/7/13 2019/10/8

IIIA 2019/10/20

5 IIR-M 2009/8/17

6 IIF 2014/5/17

7 IIR-M 2008/3/15

8 IIF 2015/7/15

9 IIF 2014/8/2

10 IIF 2015/10/31

11 IIR-A 1999/10/7 2021/4/9

12 IIR-M 2006/11/17

13 IIR-A 1997/7/23

14 IIR-A 2000/11/10 2020/7/27

IIIA 2020/11/5

15 IIR-M 2007/10/17

PRN Block Start End

16 IIR-A 2003/1/29

17 IIR-M 2005/9/26

18 IIR-A 2001/1/30 2018/1/23

IIA 2018/1/24 2020/3/9

IIIA 2020/3/13

19 IIR-B 2004/3/20

20 IIR-A 2000/5/11

21 IIR-A 2003/3/31

22 IIR-B 2003/12/21

23 IIR-B 2004/6/23 2020/6/9

IIIA 2020/7/14

24 IIF 2012/10/4

25 IIF 2010/5/28

26 IIF 2015/3/25

27 IIF 2013/5/15

28 IIR-A 2000/7/16

29 IIR-M 2007/12/20

30 IIF 2014/2/21

31 IIR-M 2006/9/25

32 IIF 2016/2/5
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