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ABSTRACT

In this paper, we propose a novel method to detect Global Navigation Satellite System (GNSS) spoofing using
Inertial Navigation Systems (INS) based on inherent noise of spoofed signals. We showed in prior work [21] that a
solution separation-based monitor provides detection capability for slowly growing faults. We also demonstrated how
the monitor can enable fault exclusion by utilizing an INS-only solution that is not corrupted by prior calibration
using spoofed GNSS signals. We proposed utilizing sequence of solution separation monitor windows which allow
us to maintain continuous bounded protection level while switching from one window to the next. However, for
very slowly growing faults that may be present longer than the run time of a solution separation monitor window,
spoofing can go undetected thereby invalidating the fault free assumption required to switch from one window to
another. To mount an effective attack of this type, a spoofer would need to closely track the motion of the target
to generate the appropriate GNSS signal. It is undeniable, however, that the spoofer would not be able to precisely
replicate an authentic GNSS signal because of inherent error in the tracking device, latency of tracking and spoofed
signal broadcast, and external environment factors such as wind gusts. In this work, we evaluate the worst-case
scenario from missed detection aspect, where a spoofer replicates the authentic GNSS signal with only additive
errors due to uncertainty and latency of user’s position. We model these tracking errors as additive white noise
to the spoofed signal. We observe the changes in the stochastic nature of the Kalman filter position errors over



time—i.e., prior to and after a spoofing onset. We propose a cumulative position domain innovation monitor, which
accumulates these tracking errors over time to detect the anomalous temporal structure of the spoofed measurements.
We analytically show that accumulated errors result in spectral change of the test statistic with a shift in mean and
increased variance. We provide an analytical method to determine the length of the monitor window that would
ensure detection of a minimum tracking error with given probability of missed detection requirement. This allows
us to choose the length of solution separation monitor windows where detection is ensured to maintain the fault
free assumption required to switch from one window to another.

I. INTRODUCTION

The civil infrastructure of safety critical fields such as aviation, maritime, and terrestrial navigation rely on
GNSS. This brings a major responsibility to ensure absolute GNSS integrity in the system. The civil GNSS signal
structure is publicly known and vulnerable to spoofing attacks, which endangers public safety [1]. Spoofing attacks
consist of feeding a predetermined faulty signal to the user which may be preceded with intentional jamming of
the authentic radio-frequency signals. The fault can be injected to cause gradual position or time offsets. Potential
detection techniques include signal processing techniques, cryptographic authentication [2], spoofing discrimination
using spatial processing by antenna arrays, automatic gain control schemes [3], [4], GNSS signal direction of
arrival comparison [5], code and phase rate consistency checks [6], high-frequency antenna motion [7], and signal
power monitoring techniques [8]. Some of these methods are indeed effective, but they have various computational,
logistical, and physical limitations. Augmenting data from auxiliary sensors such as Inertial Measurement Units
(IMU), barometric altimeters, and independent radar sensors to discriminate spoofing has also been proposed [9],
[10].

The first stochastic description and quantification of the performance of an IMU-based GNSS spoofing monitor
against worst-case faults was introduced by us [11]–[17]. We specifically investigated anti-spoofing solutions utilizing
IMUs since essentially all modern vehicles are equipped with them, thereby requiring minimal additional cost or
system modification. An IMU is naturally immune to external interference, which makes it an excellent resource to
ensure navigation continuity. Additionally, when used in the navigation solution in various integration schemes with
GNSS (such as uncoupled, loosely-, tightly-, or ultra-tightly coupled), the INS provides redundancy needed to resist
spoofing attacks. In our prior work [14]–[17], we developed a chi-squared innovation sequence-based detector which
monitored the accumulated time history of normalized Kalman filter (KF) innovations. The main advantages of KF
innovation sequence monitor are that innovations are already computed by the KF, so little additional computation is
required for the monitor implementation, and that it provides detection capability against slowly growing faults. We
evaluated the performance of the innovation sequence monitor against worst-case sequences of GNSS faults both
analytically and experimentally [17], [18]. The worst-case fault here represents a spoofed GNSS signal profile that
maximizes integrity risk. We also analyzed the sensitivity of the innovation sequence monitor against error modeling
uncertainties in the INS/GNSS KF structure [19]. The innovation sequence monitor accounts for spoofing detection
but does not provide direct exclusion since the INS is being re-calibrated with GNSS during spoofing monitoring.
Also, the innovation sequence monitor assumes that the monitor start time was the same as the spoofing onset time
and does not have a defined run time.

To address the aforementioned issues of fault exclusion, and monitor start and run time, we developed a solution
separation-based monitor which provides better detection capability for slowly growing faults than innovation
sequence monitor [21]. We also demonstrated how the solution separation monitor can enable fault exclusion by
utilizing an INS-only solution that is not corrupted by prior calibration using spoofed GNSS signals. To address
monitor start and run time, we then proposed a sequential window monitoring method which utilizes sequence of
solution separation monitors to capture fault onset at any given time epoch. Also, the sequence of monitors allow us
to maintain a continuous bounded protection level while switching from one window to the next. For slowly growing
faults present longer than the run time of the monitor, spoofing can go undetected. This undetected spoofing will
invalidate the fault free assumption required to switch from one window to the next. We need to ensure detection
within each window to maintain the fault free assumption required for switching windows.

In this paper we propose a novel method to ensure detection for a window of solution separation monitor. We
propose accumulating inherent errors in a spoofed signal due to spoofer’s uncertainty of user position —i.e., position
tracking error. Instead of observing the innovations where the position tracking errors might be diluted with other state



errors, we observe these errors directly in the position domain. We accumulate these tracking errors using position
domain innovation to form a test statistic and derive its distribution. We also analytically derive the relationship
between the magnitude of the tracking error and monitor run time required for detection given a probability of false
alarm requirement. This in turn allows us to choose the run time of solution separation windows where detection is
ensured for a minimum tracking error allowing us to switch from one window to another.

Section II provides the background of the tightly coupled INS/GNSS KF structure used for an en route aircraft and
section III contains the background of innovation sequence and solution separation monitor with their limitations.
We then introduce the cumulative position domain innovation monitor in section IV with the results for an en route
example shown in section V. Finally we conclude this work in section VI while providing some derivations in
appendices.

II. KALMAN FILTER STATE MODEL

In this work, we consider an example of an en route scenario where an aircraft utilizes a tightly-coupled INS/GNSS
architecture and its position and velocity solution from the KF is used for navigation. En route scenarios are
vulnerable to spoofing due to the absence of visual references for the pilot, possible unavailability of navigation
error corrections from reference stations, and the time availability for spoofer to slowly deviate the aircraft.

Tightly-coupled INS/GNSS architecture

An INS provides the navigation solution as aircraft position vector r with components x, y, z, velocity vector v
with components u, v, w, and attitude φ , θ , ψ (Euler angles), using IMU measurements. The aircraft states are,

xA/C =
[
x y z u v w φ θ ψ

]T (1)

An IMU consists of tri-axis accelerometers and gyroscopes to provide measurements of acceleration and body
angular rate. The acceleration measurements are integrated once to obtain velocity and then integrated again to get
position, whereas attitude is obtained by integrating angular rate measurements. These measurements have errors
(bias and noise), therefore the position solution drifts over time. In a tightly-coupled INS/GNSS architecture, a KF
uses raw code and carrier measurements to estimate and correct the error in the drifting INS states to provide the
integrated navigation solution.

The IMU measurement ũ has errors such as time dependent biases and noise. Therefore it is modeled as a “true”
measurement u∗, corrupted with a constant bias bc, a time-dependent component of bias b, and additive White-
Gaussian noise (WGN) ηu as represented in (2). The constant bias is usually specified as bias repeatability and the
additive WGN ηu is commonly derived from specifications of velocity random walk (VRW) of accelerometer and
angular random walk (ARW) of gyroscope.

ũ = u∗+bc +b+ηu (2)

The time dependent component of the bias b, is modeled as a first order Gauss-Markov random process (GMRP)
with time constant τb and driving WGN νb. This driving WGN νb is derived from the specification of bias instability.

ḃ =− 1
τb

b+νb (3)

The bias dynamics are included in the process model with augmentation of bias states xbias to the aircraft states.
Thus, for three different IMU axes, the bias states for both acceleration and angular rate measurements are shown
in (4). Equations (1) and (4) show all the nominal states that are propagated to obtain the INS navigation solution.

xbias =
[
bax bay baz bωx bωy bωz

]T (4)

We assume that an en route aircraft utilizes only single frequency GNSS measurements without any differential
corrections, but the idea is also applicable to dual frequency multi constellation GNSS, terminal and precision
approach scenarios. Equation (5) shows a simplified GNSS measurement equation where the code measurement ρ

for each satellite is composed of true range r, satellite and receiver clock biases dtsv and dtrc, code ionospheric
delay Iρ , code tropospheric delay Tρ , code mulitpath mρ , and receiver code thermal WGN νth(ρ) . Similarly, the carrier



phase measurement λφ for each satellite is composed of true range r, satellite and receiver clock bias dtsv and dtrc,
carrier ionospheric delay Iφ , carrier tropospheric delay Tφ , carrier phase mulitpath mφ , carrier phase cycle integer
ambiguity Nφ , and receiver carrier thermal WGN νthφ

. The code ionospheric delay Iρ is of the same magnitude as
carrier ionospheric delay Iφ and code tropospheric delay Tρ is of the same magnitude as carrier tropospheric delay
Tφ : [

ρ

λφ

]
=

[
r
r

]
+

[
c (dtrc−dtsv)
c (dtrc−dtsv)

]
+

[
Iρ

−Iφ

]
+

[
Tρ

Tφ

]
+

[
mρ

mφ

]
+

[
0

λNφ

]
+

[
νth(ρ)
νth(φ)

]
(5)

where, c is the speed of light in vacuum and λ is the carrier wavelength.
All GNSS errors need to be accounted for in the measurement in order to be utilized in the KF. Satellite clock

offsets cdtsv have a correction model available from the navigation message. After applying the satellite clock offset
correction, there are still residual errors due to satellite clock and ephemeris parameter uncertainty. These residual
errors rsv are modeled [22] as a first order GMRP with a time constant τrsv of 5 hours subject to driving WGN
νrsv with a standard deviation of 1.8 m. Equation (6) represents the first order GMRP model for satellite clock and
ephemeris residual errors.

ṙsv =−
1

τrsv

rsv +νrsv (6)

The receiver clock offset cdtrc is compensated by a constant clock offset drift rate model. The clock offset state
rrc is modeled to drift with a constant rate ṙrc over time as shown by equation (7),[

ṙrc
r̈rc

]
=

[
0 1
0 0

][
rrc
ṙrc

]
+

[
wrrc

wṙrc

]
(7)

where, wrrc and wṙrc are WGN for clock offset and clock offset drift rate, respectively. The variance of these WGN
is obtained using typical Allan Variance coefficients of TCXO timing standards. The white phase noise (h0) and
frequency random walk noise (h2) coefficients used are 2×10−19 and 2×10−20, respectively.

For ionospheric delay, we use the ionospheric correction Tiono from the Klobachaur model, which results in
residual errors ri modeled in [20] to have a standard deviation given by equation (8),

σi =
√

max
[
( cTiono

5 )2,(Fppτvert)
2
]

(8)

where, Fpp is the obliquity factor and τvert is calculated given the geomagnetic latitude [20]. Since ionospheric delay
is a slow changing error it is modeled as a first order GMRP with a time constant of 40 hours and driving WGN
νri shown as,

ṙi =−
1
τri

ri +νri (9)

The troposheric delay is corrected with the correction model specified in [20] and the residual errors rt in the
zenith direction are modeled as a first order GMRP with a time constant of 20 hours and a standard deviation 0.09
m(el) (meters) [23]. m(el) is the mapping function of satellite elevation. Equation (10) shows the first order GMRP
model of tropospheric residual error rt ,

ṙt =−
1

τrt

rt +νrt (10)

where, νrt is the driving WGN for zenith tropospheric residual errors.
Being time correlated, the multipath is modeled as a first order GMRP with a time constant τm of 25 seconds

and driving WGN νm [20] .

ṁ =− 1
τm

m+νm (11)

The standard deviation for code multipath error is 5 m and for carrier multipath error we assume it to be 0.02 m
[20] .



Constant carrier phase cycle integer ambiguities, along with all above mentioned residual error states, are included
in the modeled GNSS measurement error states:

xGNSS =
[
rsv

1:n rrc ṙrc ri
1:n rt

1:n m1:n
ρ m1:n

φ
λN1:n

φ

]T
(12)

where, n is the number of satellites.
The final state vector of the INS/GNSS system is

x =
[
xA/C xbias xGNSS

]T (13)

The dynamics of the augmented system is perturbed to obtain the linear error-state (δx) process model to be utilized
in the KF. The error-state process model in discrete time can be represented as,

δxk+1 = Φk δxk +Γwk wk (14)

where, Φ is the state transition matrix, Γw is the process noise model, and w is the additive white noise with a
respective process noise covariance Q.

The error-state measurement model in discrete time is represented as,

δzk = Hk δxk +νk (15)

where, H is the observation matrix, and ν is the measurement noise with a respective measurement noise covariance
V.

III. INNOVATION SEQUENCE AND SOLUTION SEPARATION MONITORS

The innovation sequence-based monitor is a chi-squared monitor which utilizes cumulative normalized innovations
from a KF as the test statistic, and compares it against a threshold [17]. The innovation vector γ at time epoch k is
defined as

γk = δzk−Hk δxk (16)

where, δx is the a priori error state vector.
A cumulative test statistic qk is defined as the sum of squares of the normalized innovation vectors over time as

qk =
k

∑
i=1

γ
T
i S−1

i γ i (17)

where, Si is the innovation vector covariance matrix at time epoch i.
For a given false alarm rate requirement under fault free scenario, the threshold T 2

k is determined from the inverse
chi-square cumulative distribution function (CDF). The monitor simply checks whether the test statistic qk is smaller
than a predefined threshold T 2

k as
qk ≷ T 2

k (18)

Due to limitations of the innovation sequence monitor mentioned earlier in the paper, we proposed the sequential
solution separation monitor. The solution separation monitor is based on the difference of position solution between
a faulty full-set (INS and GNSS) KF solution X̂KFk and a fault-free subset INS-only solution Xck . The test statistic
at any time k is defined as,

qk = X̂KFk −Xck (19)

The covariance for the test statistic is given by [21],

Pk = Pck − P̂KFk (20)

where, P̂KFk is the position error covariance for X̂KFk and Pck is the position error covariance for Xck . The threshold
for the test statistic is obtained using the false alarm requirement and inverse CDF of the Gaussian distribution.

A major limitation of the solution separation monitor is the ever increasing protection level. Predefined alert limits
do not allow for the protection levels to grow infinitely and an aircraft would need to maintain protection levels
less than the alert limit. Thus, a solution separation monitor would have a fixed run time until the protection level



reaches a certain predetermined value. One way monitor run time can be determined is the time required for the
protection level to reach a given maximum value. To maintain a bounded protection level we proposed in our prior
work a sequence of solution separation monitor windows [24]. Fig. 1 illustrates the concept of sequential window
monitors each with its own increasing protection level. To maintain a bounded protection level over time we switch
from one monitor window to the next. Since we switch windows to maintain the bounded protection level, this
requires fault free assumption for the prior window, or accounting for prior windows missed detection probabilities
in the current computation of the protection level.

The increasing nature of protection level of solution separation monitor comes from the increasing nature of
test statistic covariance, and causes the threshold to increase over time as well. For faults growing slower than
the rate of threshold, spoofing will go undetected and thus invalidate the fault free assumption required to switch
from one window to the next. Thus, we need a separate detection method which can ensure that for a given run
time of solution separation window, there was no spoofing allowing us to switch from one window to the next. We
analytically derive this monitor window length N in the next section which is the run time for each monitor window.
We will observe that monitor run time will not be a function of some predetermined maximum protection level but
will depend on the detection capability of the new monitor.

Fig. 1: Illustration of solution separation sequential monitor windows with increasing protection levels.

To formulate this new detection method, we look in detail at the mechanism of spoofing. In order to slowly divert
an aircraft from its planned path, the spoofer would replicate an authentic signal and then send a higher power
spoofed signal to the aircraft. Once the aircraft locks into the spoofed signal, the spoofer then would inject very
small deviations and thus divert the aircraft over time. Although the attacker tries to broadcast a signal that mimics
the authentic one in order to go unnoticed, it practically is infeasible to broadcast an exact replica. The reason
being that the spoofer needs the aircraft’s antenna exact location to construct the spoofed signal. Any uncertainty
in aircraft antenna position would eventually appear as errors in the spoofed signal. Since the spoofer would have
to use some sort of tracking device to locate the aircraft, we refer to these position uncertainties as tracking errors.

In this work, we aim to detect even spoofing scenarios that only include these tracking errors. Any additional
fault that the spoofer injects would be even easier to detect. Therefore, our proposed detection method would detect
spoofing even before spoofer injects any small deviations or faults to the spoofed signal. In other words, our detection
methods would work even if the spoofer decides to send a spoofed signal which mimics the authentic signal for a
long time given only small inherent noise in the signal.



IV. CUMULATIVE POSITION DOMAIN INNOVATION MONITOR

In appendix C, we show how tracking error appears in spoofed measurements as an additive term.

zs
k+1 = zk+1 +Hk+1νt (21)

where, zs
k+1 is the spoofed measurement vector zk is the actual measurement vector, Hk is the observation matrix,

and νt is the column vector with tracking error for all the position states.
We can observe these tracking errors in the innovation vector as it contains the difference between GNSS

measurement and the predicted measurement of the process model with INS measurements. Since the innovation
vector contains all the states, the position tracking errors would be diluted due to presence of errors from other states
such as multipath. A better way to observe these tracking errors would be to directly observe the position errors
by transforming the innovation vector in the position domain. In our prior work [24], we developed the position
domain innovation monitor. In Appendix B, we define the position domain innovation (∆x) which is the state error
vector obtained after the innovation vector is transformed to the state domain. From the state error vector we extract
a single position state error (say z position) for any time k as,

∆zk = uT Lk(zk−Hkx̄k) (22)

where, x̄k is the a-priori state, Lk is the Kalman gain matrix and uT is the single row vector that extracts the state
error along the desired position direction.

This position domain innovation has the following distribution.

∆zk ∼N (0,uT Lk(HkPkHT
k +Vk)LT

k u) (23)

where, Vk is the measurement error covariance.
We define scalar variance for ∆zk and as,

σ
2
∆zk
∼= E(∆zk∆zk

T ) = uT Lk(HkPkHT
k +Vk)LT

k u (24)

When a spoofer sends a spoofed signal mimicking the authentic signal with some inherent additive noise, this
additive noise can be observed in the position domain innovation. In Appendix C, we show how tracking error
affects the position domain innovation. We model these tracking errors as white Gaussian noise νt distributed as
N (0,σ2

t ). These tracking errors affect the position domain innovation with no change in mean but increasing the
variance. Note that superscript s is used to denote terms related to the spoofer. If we define ∆zs

k as the position
domain innovation which includes the tracking error then,

∆zs
k = uT

∆xk +uT LkHkνt (25)

The distribution for this spoofed position domain innovation is,

∆zs
k ∼N (0,uT Lk(HkPkHT

k +Vk)LT
k u+uT LkHkRtHT

k LT
k u) (26)

where, Rt is the error covariance for the tracking error.
Also, if we define,

σ
2
∆zt
∼= uT LkHkRtHT

k LT
k u (27)

then we can write the scalar variance of spoofed z position domain innovation as,

σ
2
∆zs

k
= σ

2
∆zk

+σ
2
∆zt

(28)

Now, we can write the position domain innovation before and after spoofing, respectively as,

∆zk ∼N (0,σ2
∆zk

) (29)

∆zs
k ∼N (0,σ2

∆zk
+σ

2
∆zt

) (30)

If we observe just the position domain innovation at each time epoch for detection, then for a small tracking
errors this change in variance might not provide detection. We propose accumulating these errors over time for



detection and form the position domain innovations squared as a test statistic. For the period of accumulation N we
define our test statistic as,

qN =
N

∑
k=1

∆zk
2 (31)

In Appendix A, we show that a scalar normal random variable squared follows a gamma distribution. A gamma
distribution Gamma(k,θ) is defined by its shape parameter k and scale parameter θ . Utilizing this result from
Appendix A, we can write the distribution of square of z position domain innovation as,

∆zk
2 ∼ Gamma

(
1
2
,2σ

2
∆zk

)
(32)

Similarly, for the spoofed case we will get,

(∆zs
k)

2 ∼ Gamma
(

1
2
,2σ

2
∆zs

k

)
= Gamma

(
1
2
,2
(

σ
2
∆zk

+σ
2
∆zt

))
(33)

Also, from summation property, the sum of gamma distributed random variables is also gamma distributed as
shown in Appendix A. The assumptions made for this summation is that for a given period of time, the change in
variance of the position domain innovation is negligible. Thus, the test statistic qN has gamma distribution as,

N

∑
k=1

∆zk
2 ∼ Gamma

(
N

∑
k=1

1
2
,2σ

2
∆z

)
= Gamma

(
N
2
,2σ

2
∆z

)
(34)

where, σ2
∆z = σ2

∆z1
= σ2

∆z2
= ...= σ2

∆zk
= uT Lk(HkPkHT

k +Vk)LT
k u.

For a given probability of false alarm requirement PFA, we can now determine the threshold as,

T N = F−1
(

PFA

∣∣∣∣ N
2
,2σ

2
∆z

)
(35)

where, F−1 is the inverse CDF function of gamma distribution.
In the spoofed case where the tracking error is embedded in the test statistic, the distribution of test statistic

changes to,
N

∑
k=1

(∆zs
k)

2 ∼ Gamma

(
N

∑
k=1

1
2
,2
(

σ
2
∆z +σ

2
∆zt

))
= Gamma

(
N
2
,2
(

σ
2
∆zk

+σ
2
∆zt

))
(36)

where, σ2
∆zt

= uT LkHkRtHT
k LT

k u and Rt is the covariance for the tracking error.
From (36) we can see that tracking error causes the scale parameter of the test statistic distribution to change. For

a gamma distribution with shape parameter k and scale parameter θ , using moment generating function, we know
that the mean and variance are kθ and kθ 2, respectively. In order to understand how the tracking error helps with
detection, we take the large N approximation for gamma distribution. For large values of N,

Gamma(k,θ)≈N (kθ ,kθ
2) (37)

Thus, the distributions for spoof free and spoofed case can be approximated for large N as,

N

∑
k=1

∆zk
2 ∼ Gamma

(
N
2
,2σ

2
∆z

)
≈N

(
Nσ

2
∆z ,2Nσ

4
∆z
)

(38)

N

∑
k=1

(∆zs
k)

2 ∼ Gamma
(

N
2
,2
(

σ
2
∆z +σ

2
∆zt

))
≈N

(
N
(

σ
2
∆z +σ

2
∆zt

)
,2N

(
σ

2
∆z +σ

2
∆zt

)2
)

(39)

It is clear from the above two equations that the tracking error causes the mean of the test statistic qN distribution
to shift by Nσ2

∆zt
and increases its variance by 2Nσ4

∆zt
+ 4Nσ2

∆zσ2
∆zt

, which is illustrated in Fig. 2. Although the
tracking error shifts the mean of the distribution and helps with detection, the increase in variance slightly increases
the likelihood of missed detection. Thus, there is a trade-off between mean shift and increase in variance which



Fig. 2: Illustration of change in test statistic qN distribution due to tracking error.

limits the minimum tracking error that can be detected. We will observe in the results section that the shift in mean
eventually dominates the increase in variance with increasing N and σ∆zt .

Now given the above equations, we can determine the probability of missed detection as,

PMD = Φ

−Φ−1
(

PFA
2

)
σ2

∆z −Nσ2
∆zt

√
2N
(

σ2
∆z +σ2

∆zt

)
 (40)

Recall in section III we introduced the motivation for this work as determining a new monitor which would ensure
detection for a run time N of solution separation window. The developed cumulative position domain innovation
monitor ensures detection with a missed detection rate PMD, within run time N, given spoofer’s tracking error
magnitude exceeding σt . Thus, we propose running a cumulative position domain innovation monitor within each
solution separation monitor window. The cumulative position domain innovation monitor would ensure detection
with acceptable PMD, thereby allowing to maintain the fault free assumption required to switch from one solution
separation window to the next. Given that spoofer’s tracking error is bound to exceed a magnitude of σt , equation
(40) would allow to determine the required run time N such that spoofing is detected with a missed detection rate
PMD. With the run time N determined we can now ensure a corresponding bounded protection level. In the next
section, we discuss the relationship between tracking error magnitude and monitor run time and an en route example
result is shown.

V. RESULTS

In Fig. 3 we illustrate the analytical relationship between monitor run time N, tracking error magnitude σt
and probability of missed detection PMD. The missed detection rate decreases with increasing the run time as more
errors are accumulated over time and shift the mean of test statistic distribution as shown in equation (39). Similarly,
increasing tracking error magnitude contributes to shift of mean of test statistic which reduces PMD.

We perform en-route simulations for an aircraft utilizing a navigation grade IMU and single frequency GPS
measurements. The spoofer tracks the aircraft with inherent tracking errors to generate and broadcast counterfeit
spoofed signals. The spoofed signal are replica of the authentic signals with only additive zero mean white Gaussian
noise. We chose a monitor run time of 150 seconds with GNSS frequency of 2 Hz (i.e. N = 300) and a false
alarm rate requirement of 10−5. Although, we can take credit for 3-dimensional tracking errors, we conservatively
assume the error is one dimensional and ignore the other two in this analysis. Fig. 4 shows the performance of
the cumulative position domain innovation monitor for different tracking error magnitudes. The monitor is able to
detect spoofing for tracking error as small as 2 cm for the given monitor run time.



Fig. 3: Illustration of probability of missed detection PMD for given tracking error σt and monitor run time N.

Fig. 4: Monitor performance for different tracking error magnitude.

More realistically, spoofer’s tracking error would be more in the decimeter range due to multiple factors such
as the long range of spoofer from the aircraft, inherent noise of tracking device, latency of tracking and signal
broadcast, spoofer’s uncertainty of aircraft lever arms, wind gusts etc. Even if the attacker can overcome most of
these obstacles and assume a non-realistic 5cm tracking error can be achieved, the monitor detects the attack within
a few seconds. Therefore, this monitor may also cover critical scenarios such as aircraft approach and landing where



aircraft time to alert or protection level is tighter. As a first step we modeled the spoofer tracking error as white
Gaussian noise and aim to analyze the performance of the monitor for tracking errors modeled as colored noise in
the future.

VI. CONCLUSION

In this work, we propose a cumulative position domain innovation monitor which accumulates tracking error
in spoofer’s signal for detection. We analytically derive equations to relate missed detection rate, tracking error
magnitude and monitor run time. We also address the monitor run time for sequence of solution separation monitor
windows by proposing that we run the cumulative position domain innovation monitor in conjunction to ensure
detection and allow switching of windows. We analytically prove that even with centimeter level tracking error, the
monitor can detect spoofing with low probability of missed detection.

VII. APPENDIX

A. Distribution of scalar normal random variable squared

Consider a scalar normal random variable X , which has the following distribution,

X ∼N (0,σ2) (41)

The square of the normal random variable can be represented as another random variable Y and can be written as,

Y = X2 (42)

In order to determine the distribution of this new random variable Y , we first evaluate the cumulative distribution
function (CDF) of Y and then take its derivative to get the probability density function (PDF). The CDF for the
random variable Y evaluated at x can be written as the probability that Y will take a value less than or equal to x.
This is shown below as,

FY (x) = FX2(x) = P(X2 ≤ x) = P(−
√

x≤ X ≤
√

x) (43)

The above CDF equation can be written in terms of integral of PDF as,

P(−
√

x≤ X ≤
√

x) =
∫ √x

−
√

x

1√
2πσ

e−
t2

2σ2 dt (44)

Now to obtain the PDF of X2, we differentiate the CDF as,

fX2(x) =
d
dx

∫ √x

−
√

x

1√
2πσ

e−
t2

2σ2 dt (45)

For differentiating the CDF we use the Leibniz rule of differentiating an integral. If,

Φ(x) =
∫ b(x)

a(x)
g(t,x)dt (46)

then, its derivative with respect to x is given by,

d
dx

Φ(x) =
∫ b(x)

a(x)

∂

∂x
g(t,x)dt +g(b(x),x)

d
dx

b(x)−g(a(x),x)
d
dx

a(x) (47)

For our case,

Φ(x) =
∫ √x

−
√

x

1√
2πσ

e−
t2

2σ2 dt (48)

Thus, we get the derivative as,

fX2(x) =
∫ √x
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−
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The first term of the equation above becomes zero and we get,

fX2(x) =
1√

2πσ
e−

x
2σ2

1
2
√

x
+

1√
2πσ

e−
x

2σ2
1

2
√

x
(50)

Simplifying further,

fX2(x) =
1√

2πσ

1√
x

e−
x

2σ2 (51)

We know that the PDF of a gamma distribution with shape parameter k and scale parameter θ is given by,

f (x) =
1

Γ(k)θ k xk−1e−
x
θ (52)

where, Γ is the Gamma function. We can rewrite the PDF of X2 as the general form of PDF of gamma function as,

fX2(x) =
1

√
π(2σ2)

1
2

x
1
2−1e−

x
2σ2 (53)

Using Γ( 1
2 ) =

√
π , we get,

fX2(x) =
1

Γ( 1
2 )(2σ2)

1
2

x
1
2−1e−

x
2σ2 (54)

Comparing the above equation to the general PDF of a gamma distribution, we can see that the PDF of X2 is
gamma distributed with shape parameter k = 1

2 and scale parameter θ = 2σ2. As an illustration, if we consider a
special case of standard normal variable i.e. σ = 1, we get the PDF as,

fX2
σ=1

(x) =
1√
2π

x
1
2−1e−

x
2 (55)

The PDF of a chi-square distribution with degrees of freedom k is,

f (x) =
1

Γ( k
2 )2

k
2

x
k
2−1e−

x
2 (56)

If we substitute k = 1, we get the PDF of standard normal random variable squared. Thus, we can see that scalar
standard normal random variable squared has a chi-squared distribution with a single degree of freedom. Also, this
chi-squared distribution is a special case of gamma distribution with shape parameter k = 1

2 and scale parameter
θ = 2.

If we take the cumulative sum of the normal random variables squared, the distribution of this sum can be
evaluated using the summation property of random variables with gamma distribution. The summation property
states that if the random variables Yi ∼ Gamma(ki,θ) are independent then,

N

∑
i=1

Yi ∼ Gamma

(
N

∑
i=1

ki,θ

)
(57)

B. Position domain innovation

In a Kalman filter structure the innovation at at time k is,

γk = zk−Hkx̄k (58)

where, zk is the measurement vector, Hk is the observation matrix and x̄k is the a-priori state. The state error vector
of size n×1, where n is the number of states, can be written as,

∆xk = Lk(zk−Hkx̄k) (59)

where, Lk is the Kalman gain. In order to observe just one state error (say z position), we would use a single row
vector uT that extracts the desired position direction as,

∆zk = uT Lk(zk−Hkx̄k) = uT Lkγk (60)



Since, E(γk) = 0, then E(∆zk) = 0. Also using the result that E(γk+1γk
T ) = 0, it can similarly be shown that

E(∆zk+1∆zk
T ) = 0. The variance for the innovation vector γk is given by,

E(γkγk
T ) = HkPkHT

k +Vk (61)

where, Pk is the a-priori state error covariance and Vk is the measurement error covariance. Thus, the variance for
∆zk is,

σ
2
∆zk
∼= E(∆zk∆zk

T ) = uT Lk(HkPkHT
k +Vk)LT

k u (62)

C. Effect of tracking error on position domain innovation

We define the user position uncertainty of the spoofer as the tracking error and assume that it is a zero mean
Gaussian white noise and distributed as,

νt ∼N (0,σ2
t ) (63)

We will use the subscript s for terms that are related to the spoofer or spoofed signal. At time k, the spoofer estimates
the user position with tracking error given as, xs

k
ys

k
zs

k

=

xk
yk
zk

+
νtx

νty
νtz

 (64)

where, xk,yk,zk are actual user position. We conservatively assume that the spoofer does not have any uncertainty
in the user’s velocity vk and predicts the user future position at time k+1 as,xs

k+1
ys

k+1
zs

k+1

=

xs
k

xs
k

xs
k

+
uk

vk
wk

∆t (65)

where, ∆t is the time interval after which the user receives GPS signals. We also assume the worst case scenario
where the spoofer has negligible uncertainty for all the other states of the Kalman filter as well as knowlegde of the
Kalman filter structure. Thus, the spoofer creates the state vector xs

k+1 with all the other states to be transformed
into range domain as,

zs
k+1 = Hk+1xs

k+1 (66)

The user then receives this spoofed measurement with receiver thermal noise νth as,

zs
k+1 = Hk+1xs

k+1 +νth (67)

Expanding the above equation,
zs

k+1 = Hk+1xk+1 +Hk+1νt +νth (68)

where, νt is the column vector with tracking error for all the position states. Rearranging the above equation we
get,

zs
k+1 = Hk+1xk+1 +νth +Hk+1νt = zk+1 +Hk+1νt (69)

Now, the innovation vector due to spoofed measurements is given as,

γ
s
k+1 = zs

k+1−Hk+1x̄k+1 = zk+1 +Hk+1νt −Hk+1x̄k+1 (70)

Rearranging the above equation we get,

γ
s
k+1 = zk+1−Hk+1x̄k+1 +Hk+1νt = γk+1 +Hk+1νt (71)

Thus, the position domain innovation can be written as,

∆xs
k+1 = Lk+1(γk+1 +Hk+1νt) = ∆xk+1 +Lk+1Hk+1νt (72)

We can see that E(∆xs
k+1) = 0 and the variance is given by,

E(∆xs
k+1∆xs

k+1
T ) = Lk+1(Hk+1Pk+1HT

k+1 +Vk)LT
k+1 +Lk+1Hk+1RtHT

k+1LT
k+1 (73)



where, Rt is the covariance for the tracking errors, given as,

Rt =


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t 0 0 ... 0
0 σ2

t
0 0 σ2

t
...

. . .
...

0 ... 0
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(74)

and n is the number of states. Extracting z position error state using uT and for simplicity taking the above equations
for time k we get,

∆zs
k = uT

∆xk +uT LkHkνt = ∆zk +uT LkHkνt (75)

The scalar variance is then given by,

E(∆zs
k∆zs

k
T ) = uT Lk(HkPkHT

k +Vk)LT
k u+uT LkHkRtHT

k LT
k u (76)

If we define,
σ

2
∆zt
∼= uT LkHkRtHT

k LT
k u (77)

then we can write the scalar variance of spoofed z position domain innovation as,

σ
2
∆zs

k
= σ

2
∆zk

+σ
2
∆zt

(78)
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