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The Local Area Augmentation System (LAAS) is the
differential satellite navigation architectural standard for civil
aircraft precision approach and landing. While the system
promises great practical benefit, a number of key technical
challenges have been encountered in the definition of the
architecture. Perhaps chief among these has been the need to
ensure compliance with stringent requirements for navigation
integrity. In this context, this research investigates the sensitivity
of integrity risk to statistical uncertainties in the knowledge
of reference receiver error standard deviation (*-"'p: _gnd} and
error correlation across the multiple reference receivers to be
used in the LAAS ground segment. A new, detailed approach
toward mitigating the integrity risk due to parameter statistical
uncertainty is presented.
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INTRODUCTION

In the Local Area Augmentation System (LAAS),
the final quantitative assessment of navigation
integrity is realized through the computation of
vertical and horizontal protection levels at the aircraft
(termed VPL and HPL, respectively). [1] In principle,
these limits are the position bounds that can be
ensured with an acceptable level of integrity risk. For
example, for a Category 1 approach, the maximum
permissible integrity risk is of the order of 10~°
with respect to a vertical alert limit (VAL) of 10 m
[2]. The prescribed algorithms for the generation of
the protection limits presume a normally distributed
fault-free error model for the broadcast pseudo-range
corrections. The standard deviation of correction
error is further assumed by the aircraft to be equal
to the broadcast value of o, .4 for each satellite.

It is clear that to ensure navigation integrity, special
care must be taken on the ground in the definition of
broadcast o, .,4. In particular, the finite test sample
sizes generally available to compute error standard
deviation and the correlation of errors between
multiple reference receivers (whose measurements
are averaged to generate the broadcast correction)
must be accounted for in the definition of g, 4.
The zero-mean Gaussian model is consistent with
reference receiver ranging errors due to thermal
noise and diffuse multipath. Other errors, such as
ground reflection multipath, can slowly vary with
environmental conditions making the underlying
distribution difficult to characterize by experimental
means alone. A number of theoretical approaches
addressing such errors are covered in a separate paper
[3]. For the purposes of the present work, errors are
assumed to be zero-mean and Gaussian.

This paper investigates the sensitivity of integrity
risk to statistical uncertainty in the knowledge of the
correction error standard deviation (o, ,,4) and error
correlation between multiple reference receivers. A
general approach toward mitigating the integrity risk
due to parameter statistical uncertainty is presented.

LAAS INTEGRITY

The basic function of the LAAS ground facility
(LGF) integrity monitoring system is the detection
and removal of anomalies present in the LAAS
signal-in-space (SIS) that would otherwise result in
an unacceptable integrity risk to an aircraft on final
approach. The notion of SIS is introduced primarily
to distribute accountability between the ground and
airborne navigation subsystems. In general, the
aircraft is responsible for the proper functionality
of the airborne equipment (which would typically
include the implementation of redundant sensor
tracks to provide the means for detection and removal
of airborne equipment failures), while the LGF is
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responsible for the detection of anomalies in both

the received satellite signals and the LAAS reference
data broadcast to the aircraft. The satellite signals and
broadcast reference data collectively define the LAAS
SIS.

As currently envisioned, LAAS SIS integrity
monitoring is comprised of both ground and airborne
elements. The need for an airborne processing
component, even for SIS monitoring, is motivated
by the fact that the integrity specifications are
expressed in the position (rather than range) domain.
Because the LGF is generally unaware of the specific
satellites being tracked by the airborne receiver at
any given time, an airborne processing component is
implemented specifically to convert ground-broadcast
range domain statistics to position domain protection
levels. More detail on the airborne processing may be
found in [2, 4].

SIGMA SENSITIVITY ANALYSIS

In the LAAS architecture, and in this analysis,
integrity risk under the hypotheses of fault-free
conditions (HO) and integrity risk in the event of a
single reference receiver failure (H1) are considered
separately. (The likelihood of simultaneous failures
on multiple reference receivers is required to be
negligibly small by design specification.) Nominally,
the vertical protection limits VPLy, and VPL,,
are computed at the aircraft based on values of
broadcast correction error standard deviation (o, g,4)
for each satellite also broadcast by the reference
station. In addition, the prescribed computation of
VPLy, requires that the ground broadcast differences
between the pseudo-range corrections derived from
various subsets of the multiple (typically 3 or 4) LGF
reference receivers. The precise mathematical structure
of these differences, termed B-values, is defined in
the LGF System Specification [5]. (In contrast, the
nominal correction broadcast for each satellite, which
1s used for positioning but not in the computation of
protection limits, is based on an average across all
reference receivers.) The prescribed missed detection
(MD) probabilities for HO and H1 are specified,
respectively, in terms of Gaussian multipliers k_, &
and k_ 4, which are defined below.

The general approach taken in this analysis is
to first quantify ‘true’ MD probability given that
the actual value of reference receiver error standard
deviation (¢) deviates from /M times the broadcast
value o, .,4. (M is the number of reference receivers
used to generate the broadcast correction.) Since it
is recognized that any realizable estimate of standard
deviation will be based on a finite number of error
samples, it is then also necessary to ensure that the
broadcast value of o, ,,4 accounts for any statistical
uncertainty that may lead to increased integrity risk.
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H1 Case

The vertical protection limit under the hypothesis
of a failure on any given reference receiver (VPLy; )

is given by the following expression derived in
[2, 4]:

N
= Z:Smfjru
()
EET

n=1

O ...B.i.l.‘(n) + J;I ()

(1)

where

n 1s the satellite index;

S, 18 nth element of the third row (representing
the vertical component) of the weighted geometry
projection matrix used to generate the position
estimate;

B, is the broadcast B-value for satellite n
associated with the given reference receiver;

M 1s the number of reference receivers used to
generate the broadcast correction;

N 1is the number of available satellites;

k. 1s a multiplier used to set the desired level of
MD probability assuming Gaussian errors. k, ; holds
a value of 2.898 for a Category 1 approach with three
reference receivers [2];

Opr_air 18 the airborne measurement error standard
deviation;

Opr_res 15 the standard deviation of residual errors
not directly attributable to ground or airborne error
(such as ionospheric and tropospheric decorrelation);

o =vMo

pr-gnd, = pr-gnd*

The maximum acceptable values of the standard
deviations oy, o, Opr_sirs Opr_res» @€ functions of
satellite elevation given in [2]. In this analysis, we first
assume a Category 1 system with a class B3 ground
facility (M = 3) and B class airborne equipment
as defined in [2]. Although we explicitly consider
only variations in o, .4, it should be noted that the
method of analysis described below is in principle
applicable to airborne and residual errors as well.

When the actual ground error standard deviation
(o) differs from the nominal value (o pr._gnd, ) used to
generate VPLy;,, the effective MD mulupher for the
computed value of VPL,;, is given by

" end, ()
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;5 [M(n}—l + o,
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Note that the B-value term is not present since it is
invariant with respect to changes in ¢. The associated
MD probability is then

By {MD | o(1)...0(N)} = Q(kyg,) (3)

where the function Q(x) is defined as the area to the
right of x under a standard normal density function
(i.e., the tail probability).

Clearly By, {MD | o(1)...c(N)} will in general be
a strong function of satellite geometry through the
projection matrix S. In this regard, a GPS constellation
simulation was executed to establish this sensitivity
The details of the geometry simulation follow.

Constellation: Nominal 24 satellite (SV)
constellation defined in RTCA DQO-229A [6].

Elevation Mask: 5 deg.

Simulated Duration: 24 h.

LGF Location: Chicago O’Hare International
Airport.

SV Outage Conditions: Both the complete 24 SV
constellation and worst case (most sensitive) 22 SV
constellation subsets were simulated.

Geometries not meeting VPLy, < VAL using
the nominal value of o, ., Were excluded since
approaches would not be conducted in these cases.

In the first set of simulations, all 24 SVs
were assumed to be usable, and the true standard
deviation o was varied in (2) on all visible SVs
by simultaneously scaling the nominal value of
Opr_gnd, fOT each satellite by the same factor. The scale

factor {i::r,f«:rpI @ﬂi} was varied from 0.5 to 2, and the
resulting integrity risk was computed from (3) for
each value of 0 /0, ;. - The integrity risk results

are shown in Fig. 1 as a function of o/0, o4 - The
discrete distribution of data points along the horizontal

(0/0pr_gna,) direction in the figure corresponds to the
discrete values of 0'/0,, g, simulated. The vertical
distribution of data points at each value of o/oy,; g4
is due to the varying geometries accumulated over a
24 h period. The upper bound integrity risk curve
(solid) represents the highest level of integrity risk
over the 24 h duration. Note that when ¢ /0, g, =
1, the MD probability attains a nominal value of
Q(k,;) = 0.0019.

Given that all 24 satellites are available, the results
in Fig. 1 are undoubtedly conservative since it is
unlikely that broadcast o, _,,q Would underestimate
the true o for all visible satellites. In this regard, a
second simulation was performed varying ¢ on only
one (the most integrity-risk-sensitive) satellite for
each geometry. The results are shown in Fig. 2. When
compared with the results of Fig. 1, integrity risk is
reduced for values of o/ - 1 (as expected)
but increased for values of o/0,; ,n9 < 1. The latter
increase is due to the fact that ¢ is reduced on only
one SV (in contrast with Fig. 1 where o was reduced
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Fig. 3. HI1 integrity risk sensitivity to o-variations, 24 SV case.
Upper bound curves from Figs. 1 and 2.

on all SVs). Fig. 3, which superposes the upper
bound curves from Figs. 1 and 2, clearly shows the
difference in integrity risk sensitivity under the two
sets of assumptions.
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In general, however, it cannot be assumed that
all 24 satellites will always be available for use.
For example, existing simulation results of LAAS
operational availability in the LAAS standard [2] are
based on worst case (lowest resulting availability)
22 satellite subset geometries. In this context, the
simulations executed above were repeated for all
22-satellite subset geometries. The resulting upper
bound sensitivity curves assuming ¢ variation on
all satellites and ¢ variation only on a single (most
sensitive) satellite are shown in Fig. 4. The results
clearly show that in the presence of a modestly
depleted constellation, there is little difference in
integrity risk sensitivity for the two approaches.
This result is readily explained by the fact that
when fewer satellites are available the effect in the
position domain of error variations on individual
geometry-critical satellites is more pronounced. For
our analysis, we can conservatively define the actual
integrity risk sensitivity curve for the H1 case as a
piecewise superposition of the two curves in Fig. 4;
for any value of ¢ /ot gna,» the upper of the two
curves is used.

Given that the conditional probability B, (MD |
o/ Opr -gmh] has been established, it is still necessary
to define a probability density for ¢/ Opr_gnd, SO that
the overall risk probability can be quantified. In this
regard, given n, independent measurements derived
from a Gaussian distribution with a sample variance
5%, Box and Tiao (7] show that the probability density
function for o is

-1
1_¢n ns /2 n_s*
N Bl 5 5 —(ry+1) 5
p(o | s,n,) [21“ (2 )] (—2 ) o exp (251) :

(4)

The derivation of (4) uses Bayes’ Theorem' with
a noninformative prior distribution for p(s). (It
is noted that this derivation and other principles
of Bayesian statistical inference have not gained
universal acceptance among statisticians.) For a
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given computed value of s, the probability that ¢
lies in any specified interval may be computed by
the integration of (4) over the interval. For example,
Fig. 5 shows the resulting probability mass function
P(0/0y gnd, | 5/%pr_gna,»1;) for 0/ 0 p;_gna, iNtervals
of width 0.01 and $/0pr_gna, = 0.9 and n, = 20.
The result is plotted together with the conditional
By (MD | 0/0,; onq ) curve already established. Clearly,
despite the fact that s is lower than Opr_gnd, fOr this
case, the likelihood that the actual value of ¢ exceeds
Tprgnd, 1S DONnegligible. As the number of available
samples n, is increased, however, the likelihood that
exceeds o, .4 decreases. Fig. 6 illustrates the case
where n, = 80. Similarly, if the computed value of
s is lower, the likelihood that ¢ exceeds Opr_gnd, 1S
also lower. Fig. 7 shows the case where n_ = 20 and
$/0pe_gna, = 0.7.

A parametric analysis was performed in which n,
was varied with discrete values 20, 50, 100, and 200,
and s/, .4 between 0.7 and 1.3 (in increments of

0.01). The overall H1 MD probability given sfo

pr-gnd,
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and n, was then computed numerically via
By (MD | 5/0p_gug 1) = D_ By (MD | 0/ gna)

X P{ﬂ-fapr_gnd[ | Sf‘gpr_gndi’ns)-

(5)
The results are plotted in Fig. 8, which shows
quantitatively how the H1 MD probability increases
as s/o nd, increases and as n, decreases. The results

pr-g
are plotted in terms of percentage error (above the

nominal value of 0.0019) in Fig. 9.

To ensure integrity in an absolute sense Fy; (MD |
$/0 pr_gna,»1ts) should not exceed the nominal specified
value of 0.0019. However, the results in Fig. 9

show that this criterion cannot be realistically

attained because an infinitely large sample set is
required. Nevertheless, it can be ensured that the MD
probability does not differ from the nominal value by
a significant amount. For example, Table I summarizes
the results obtained from Fig. 9 assuming that a 5%

tolerance is acceptable. Under this assumption, the
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TABLE I
Sigma Buffer Factor for Hl

Minimum Value of

s Tor_gnd,
50 1.16 x s
100 1.09 x 5
200 105 x s
500 1.02xs

table quantifies the minimum value of o, _gnd, that
may be broadcast given any value of s obtained from
n, samples. Clearly, the broadcast ¢ must in
general be larger than 5. As expected, huwever the
buffer factor (the amount by which s must be scaled
to define o, .4 ) approaches 1 as n; grows large. (It
should be noted that the quantitative results in Table I
apply for the H1 case only.)

HO Case

For the fault-free hypothesis, the vertical protection
limit is given by the following expression [2, 4]:

a*;_ —gad, (n)
M(n)

N
VPLy, = kﬂ*‘_md\ Z'an [ + 0y, o (n) + Uﬁr_m(ﬂ)] :
a=1

(6)

When the actual ground error standard deviation
(o) differs from the nominal value (o, ;.4 ) used to
generate VPLy,, the effective MD multlpher for the
computed value of VPLy, is given by

\lZSE { “ﬂ'ﬁdl; ) 02 (n) + a;ﬁ(n)]
ks ma, = Kg_ma
251 [;:E:; (n)-il-cr“m(n}]
(7
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where kg 4 18 5.810 for Category 1 approach with
three reference receivers [2]. The associated MD
probability is

The factor of 2 in (8) is present for the HO case
because the underlying fault-free distribution has a
zero mean, and therefore both positive and negative
errors are of interest. The sensitivity analysis executed
for the H1 case was repeated for HO. The resulting
sensitivity of MD probability for the HO case 1s
quantified in Fig 10. As with the H1 case, By,(MD |
s;'::rpr_gnd ,n;) increases as sfcr increases and as 7,
decreases. In Fig. 11, the rasull:s ml' Fig. 10 are plﬂtted
in terms of percentage error (relative to the nominal
value of 2Q(kg ,4) = 6.2 x 1079).

The results of the HO ¢-sensitivity analysis are
summarized in Table II, where a 5% MD tolerance
(relative to nominal) has again been used. As with the
H1 case, the buffer factor approaches 1 as n, becomes
very large. Note that, in general, HO o-sensitivity is
greater than that found for the H1 case. This is due
to the fact that a small variation in o for a Gaussian

random variable will cause a larger relative deviation

(8)
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TABLE II
Sigma Buffer Factor for HO

Minimum Value of

s O prgnd,
50 129 x5
100 1.16 x s
200 1.09x s
500 1.04 x 5

in probability from the nominal value when the
nominal probability is small. Comparing the buffer
factors in Table II with those in Table I, it is clear that
HO is the more restrictive case (the required buffer
factors are larger). Table II therefore serves to define
the minimum ¢ buffer factor.

CORRELATION SENSITIVITY ANALYSIS

In the preceding analysis, it was implicitly
assumed that ranging errors were uncorrelated
across ground receivers. Note, in fact, that any
such correlation is not consistent with the VPL
equations since the r.rpr _end, terms are always divided
by the number of receivers (to account for the
averaging of uncorrelated receiver measurements). In
reality, however, it is possible that some measurable
correlation exists. Furthermore, even if a negligibly
small correlation coefficient is computed from a finite
sample set, the statistical uncertainty in the estimate
must also be accounted for. Such uncertainty is
lessened, as one would naturally expect, as the
sample size used to estimate correlation coefficient
increases.

To examine sensitivity to correlation, we assume
that the ground error standard deviation for any given
reference receiver is oy, g,q - The effect of posmve
correlation between re-.cewers when averaging M*
errors can be (with modest conservatism) modeled
as an effective increase in ¢ as follows:

q:="=urpr_gnd1\/l+(M*—1)p

where p is the maximum correlation coefficient
between any pair of receivers, M* = M for HO,
and M* = M — 1 for H1. The sigma sensitivity
analysis results (in particular, the satellite geometry
simulations) are directly applicable to correlation
sensitivity as well through the following simple
transformation:

9

(Jf tjf.l:n1'_.11;";1'1::[1 }2 -1
M* -1

p= (10)

H1 Case

Using the transformation above, the horizontal axis
of Fig. 4 may be rescaled in terms of p. The resulting
upper bound curve for the conditional probability
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By, (MD | p) is shown in Fig. 12. Now given any

pair of reference receivers, each with n, samples

of measurement error, we may compute a sample
correlation coefficient r. To define a distribution for
p given r, we use a similar approach to that in the
sigma analysis except that the chi-square distribution
no longer applies. In this case, however, we make use
of the Fisher Z statistic [8] which is approximately

(Gaussian:
oo tm (1) e (1) o]
(11)

Fig. 13 illustrates an example probability mass
function P(p | r,n,) for r = 0.3, n, = 20 and finely
spaced intervals of p. (The By;(MD | p) curve from
Fig. 12 1s overlayed.) A parametric analysis was then
executed in which n, varied with discrete values 20,
50, 100, 200, and 1000 and r varied between —0.2
and 0.3. The overall H1 MD probability given p and
n, was then computed numerically using a summation
procedure equivalent to the sigma sensitivity case.
The results are plotted in Fig. 14, which shows
quantitatively how the H1 MD probability increases
as r increases and as n_ decreases.

When compared with the nominal MD probability
for H1 (0.0019), substantial increases in relative
integrity risk are clearly evident in the results.
However, this is a not unexpected result because the
VPL equations have no direct means to accommodate
the effect of positive correlation, and furthermore,
integrity risk is magnified by uncertainty in the
correlation coefficient. Note, however, that in principle
correlation can be accounted for by simply increasing
the value of o, .- For example for precisely known
values of error standard deviation (¢) and correlation
coefficient (p) we may use any value of o, _gnd, Such
that

Cor_gna, > 0/ 1+ M* = Dp. (12)

PERVAN & SAYIM: SIGMA INFLATION FOR THE LOCAL AREA AUGMENTATION OF GPS

0.02

X1 1-] ———

0.016 e

m{p 1r,nr) :

0.014 —

0.012

0.01

Probability

|
|
I
|
+-
.
|
I

0.008

0.006

0.004

.
B e e -

0.002 |

.E.4 L .. : ] - T
Fig. 13. Probability distribution for p given r = 0.3, n_=20.

x10°

5

nrvaluﬂs ﬁnm top duwn 20, 5{} IUD 200 lﬂ'l}ﬂ
45 -

S

i
1 : i
i

|
|
|
h | -
L B R R e i s EL SRS Py B
| ! i ! : | _.r"" :

Py (MD)

i e g e, e mm —— i —

!
|
i i
005 0 005 01 015 0.2

1.5
02 015 01

Fig. 14. HI integrity risk versus r.

However, to account for the fact that ¢ is not known
precisely (only the estimate s based on r, samples is
available), ¢ in the equation above must be replaced
with a(n,)s, where a(n,) is the scale factor defined
in Table II. Similarly, because p cannot be known
precisely (only the correlation coefficient estimate r
based on n, samples is available), p must be replaced
in the equation above with a buffered value p*, where
p™ 1s a function of r and »n, that is yet to be defined.
To determine the required value of p* for a given
number or samples n,, the conditional probability
P(MD | p) was recomputed assuming that the value
of Op_gnd, has already been buffered using the above
equation for selected values of p between 0 and 0.5.
The resulting curves are given in Fig. 15. Note that
the curve corresponding to p* = 0 (which represents
the case where there is no buffering on o, _gnd;)
is identical to the P(MD | p) curve in Fig. 12. As
expected, the influence of non-zero correlation
coefficient on integrity risk is decreased as px* is
mcreased (L.e., as the buffer on o, 4 is increased).
For each of the p* curves in E?g 15, it is possible
to compute Ay, (MD |r,n,) as was done for the p* =0
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case in Fig. 14. For example, the results for n, = 20
are plotted in Fig. 16. Note that the uppermost curve,
which corresponds to the case p* =0, 1s identical to
the n, = 20 curve on Fig. 14. For a 5% acceptable
tolerance on integrity risk relative to the nominal value
of 0.0019, it is possible to obtain from Fig. 16 the
maximum value of r allowable for a given value of
p*. This result can also be interpreted as the minimum
value of p* given a computed correlation coefficient
estimate r. Fig. 17 shows the results for the n, =20
case under consideration and also for values of n,
equal to 50, 100, 200, and 1000. It is clear from

Fig. 17 that a nearly linear relationship (with unity
slope and positive y-intercept) exists between r

and the minimum acceptable value of p*. Thus, the
(minimum) p* can be approximately defined by the
simple linear functions in Table III. Note that p*

must always be larger than r in order to account for
the statistical uncertainty due to a finite number of
samples. As n, becomes large, however, the minimum
acceptable value of p* asymptotically approaches r.
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TABLE III
Correlation Buffer Parameters for H1
n Minimum Value of p*
50 0.14 +r
100 0.08 +r
200 0.05+r
500 0.02+r
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Fig. 18. Minimum p* for 5% HO integrity risk tolerance.

HO Case

The correlation sensitivity analysis executed for
the H1 case was repeated for HO. Fig. 18 shows the
resulting minimum values of p* given a computed
correlation coefficient estimate . Comparison of this
figure with Fig. 17 shows that, as with the sigma
sensitivity analysis, the HO case is more restrictive.
For a given computed value of r, the value of p
required to ensure a 5% integrity risk tolerance is
larger for the HO case than the H1 case. Hence the
HO case must be the one used to define p*. The
approximate linear relations for HO derived from
Fig. 18 are given in Table IV.
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TABLE IV
Correlation Buffer Parameters for HO

n, Minimum Value of p*
50 027 +r

100 0.18+r

200 0.12+r

500 Q.06 +r

Pyo(MD|o/c, gq,)
3
I

o/C,, . grdy
Fig. 19. HO integrity risk sensitivity to o-variations, 22 SV case.

WORST CASE SENSITIVITY

The results generated thus far have: been based on
the nominal functions for g defined in
[2]. Since these functions actually deﬂlile the maximum
permissible values for these parameters, in practical
application it is likely that Opr_air @0d 0, oo Will
actually be smaller. In this case, it is expected that
integrity risk will be more sensitive to variations in
Opr_gnd, - 1t 18 therefore also instructive to examine
the limiting scenario in which o, ; and o, . are
zero. We consider here only the HO case (because
it has already been shown to be more sensitive to
variations in o and p than H1). In this regard, Fig. 19
shows the upper bound curves for B;,(MD | o/0
for the 22 SV constellation case. The upper (solid)
curve defines integrity risk sensitivity when O pr _air
and o, . are zero. The lower (dashed) curve, which
is included only for comparison, corresponds to the
case already covered where o, ;. and o, .
maximum permissible values. It is clear that integrity
risk sensitivity increased for all values of o/ Opr_gnd,
greater than one. Note that in this region, where the
curves are defined by the case where /Ty _gnd, 18
varied on all satellites simultaneously, integrity risk
sensitivity is invariant with respect to geometry for

the case where oy, ;. and oy, . are zero. This is true
since (7) reduces to

ket og, = Krma (13)

U/r I::'r[f-'l'--gl?l‘il

pr-gnd, )

hold their

TABLE V
Worst Case Sigma/Correlation Buffer Parameters for HO (Results
for Category 1 and M = 3)

n_orn Minimum o* Minimum p*
50 134 x5 0.30 +r
100 1.18 x s 0.20+r
200 1.10x s 013 +r
500 1.05xs 0.07 +r
1.45 | - S — —— e e e
14i From top to bottom:

| Integrity Risk Tolerance = 1%, 5%, 10%, 30%

a(n,)

12

1.15

11 ¢

1.05

Fig. 20. Sigma buffer factor versus number of samples.

Using the same methodology described in the sections
above, the minimum acceptable values for ¢* and
p* were computed assuming an acceptable integrity
risk tolerance of 5%. These results are given in
Table V for Category 1 approach and M = 3. Note, as
expected, that the buffer parameters are slightly higher
than those in Tables IT and IV (which were derived
using the maximum permissible values for O pr_air a0
ﬂ-pr_ms)'

Taken together, the results of the sigma and
correlation analyses above demonstrate that any
value of o, .4 may be broadcast provided that the

following inequality is satisfied:
Oprgnd > 0" V1 + (M - 1)p*/VM. (14)

INTEGRITY RISK TOLERANCE

Because the 5% integrity risk tolerance was
arbitrarily selected, it is necessary to quantify how
the buffer parameters vary with respect to integrity
risk tolerance. In this regard, Fig. 20 shows the
required value of the ¢ buffer factor as a function of
the number of samples for various values of integrity
risk tolerance. As one would naturally expect, the
figure illustrates that for any given value of n,, the
buffer factor decreases as the integrity risk tolerance
1s relaxed. Analogous behavior is exhibited for the
required correlation buffer parameter in Fig. 21.

In both Figs. 20 and 21, it is also clear that only
marginal reductions in buffer parameters will be
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v Yo s 100

realized for sample sets larger than 200 points.
However, it is equally clear that sample sets smaller
than 100 points will typically require rather large
buffer parameters.

SUMMARY

In this paper, the sensitivity of LAAS integrity risk
was mvestigated and quantified with respect to the
statistical uncertainty in the knowledge of reference
receiver error standard deviation and correlation
between multiple reference receivers. A detailed
methodology was presented to define the minimum
acceptable buffer parameters for the value of o, ,,q
broadcast to the aircraft. This work addressed the
Gaussian error structures associated with receiver
thermal noise and diffuse multipath. It is likely that
additional buffering for the effects of remaining

errors, such as ground reflection multipath will be

necessary. Continuing work in this regard is underway.
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