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Abstract — The Local Area Augmentation System (LAAS)
is the differential satellite navigation architectural standard
for civil aircraft precision approach and landing. While the
system promises great practical benefit, a number of key
technical challenges have been encountered in the definition
of the architecture. Perhaps chief among these has been the
need to ensure compliance with stringent requirements for
navigation integrity. In this context, this paper investigates
the sensitivity of integrity risk to statistical uncertainties in
the knowledge of reference receiver error standard
deviation (G 4ng) and error correlation across the multiple
reference receivers to be used in the LAAS ground segment.
A new, detailed approach toward mitigating the integrity
risk due to parameter statistical uncertainty is presented.

INTRODUCTION

In the Local Area Augmentation System (LAAS), the final
quantitative assessment of navigation integrity is realized
through the computation of wvertical and horizontal
protection limits at the aircraft (termed ‘VPL’ and ‘HPL,
respectively). [1] In principle, these limits are the position
bounds that can be ensured with an acceptable level of
integrity risk. For example, for a Category 1 approach, the
maximum permissible integrity risk is of the order of 10
with respect to a vertical alert limit (VAL) of 10 m. [2] The
prescribed algorithms for the generation of the protection
limits assume a normally distributed fault-free error model
for the broadcast pseudorange corrections. Such a model is
consistent with reference receiver ranging errors due to
thermal noise and diffuse multipath. (Remaining errors,
such as ground reflection multipath or systematic reference
receiver/antenna errors are bounded in size and can in
principle be separately accounted for by including a non-
zero mean for the correction error in the computation of
VPL.) The standard deviation of correction error is
presumed by the aircraft to be equal to the broadcast value
of ‘Op gna’ for each satellite. It is clear that to ensure
navigation integrity, special care must be taken on the
ground in the definition of broadcast oy, gq. In this regard,
the finite sample sizes generally available to compute error
standard deviation and the correlation of errors between
multiple reference receivers (whose measurements are

averaged to generate the broadcast correction) must be
accounted for in the definition oy gna.

This paper investigates the sensitivity of integrity risk to
statistical uncertainty in the knowledge of correction error
standard deviation (G ga) and error correlation between
multiple reference receivers. A general approach toward
mitigating the integrity risk due to parameter statistical
uncertainty is presented.

LAAS INTEGRITY

The basic function of the LAAS Ground Facility (LGF)
integrity monitoring system is the detection and removal of
anomalies present in the LAAS ‘signal-in-space (SIS)’ that
would otherwise result in an unacceptable integrity risk to
an aircraft on final approach. The notion of SIS is
introduced primarily to distribute accountability between
the ground and airborne navigation subsystems. In general,
the aircraft is responsible for the proper functionality of the
airborne equipment (which would typically include the
implementation of redundant sensor tracks to provide the
means for detection and removal of airborne equipment
failures), while the LGF is responsible for the detection of
anomalies in both the received satellite signals and the
LAAS reference data broadcast to the aircraft. The satellite
signals and broadcast reference data collectively define the
LAAS SIS.

As currently envisioned, LAAS SIS integrity monitoring is
comprised of both ground and airborne elements. The need
for an airborne processing component, even for SIS
monitoring, is motivated by the fact that the integrity
specifications are expressed in the position (rather than
range) domain. Because the LGF is generally unaware of
the specific satellites being tracked by the airborne receiver
at any given time, an airborne processing component is
implemented specifically to convert ground-broadcast range
domain statistics to position domain protection levels.
Specific approaches for the airborne processing may be
found in [2], [3] and [4].



SIGMA SENSITIVITY ANALYSIS

In the LAAS architecture, and in this analysis, integrity risk
under the hypotheses of fault-free conditions (HO) and
integrity risk in the event of a single reference receiver
failure (H1) are considered separately. (The likelihood of
simultaneous failures on multiple reference receivers is
required to be negligibly small by design specification.)
Nominally, the vertical protection limits VPLy, and VPLy;
are computed at the aircraft based on values of broadcast
correction error standard deviation (G, gnq) for each satellite
also broadcast by the reference station. In addition, the
prescribed computation of VPLy,; requires that the ground
broadcast differences between the pseudorange corrections
derived from various subsets of the multiple (typically 3 or
4) LGF reference receivers. The precise mathematical
structure of these differences, termed ‘B-values,’ is defined
in the LGF System Specification [5]. (In contrast, the
nominal correction broadcast for each satellite, which is
used for positioning but not in the computation of
protection limits, is based on an average across al/ reference
receivers.)  The prescribed missed detection (MD)
probabilities for HO and H1 are specified, respectively, in
terms of gaussian multipliers Kug ¢ and kyg, which are
defined below.

The general approach taken in this analysis is to first
quantify ‘true’ missed detection probability given that the
actual value of reference receiver error standard deviation
(o) deviates form the broadcast value o ga. Since it is
recognized that any realizable estimate of standard
deviation will be based on a finite number of error samples,
it is then also necessary to ensure that the broadcast value of
Opr gna @ccounts for any statistical uncertainty that may lead
to increased integrity risk.

HI Case

The vertical protection limit under the hypothesis of a
failure on any given reference receiver (VPLyy;) is given by
the following expression derived in [2], [3]:
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*  nis the satellite index;

= S, is n-th element of the third row (representing
the vertical component) of the weighted geometry
projection matrix used to generate the position
estimate;

= B, is the broadcast ‘B-value’ for satellite n
associated with the given reference receiver;

= M is the number of reference receivers use to
generate the broadcast correction;

= N is the number of available satellites;

= Kng is a multiplier used to set the desired level of
missed detection probability assuming gaussian
errors, kyg holds a value of 2.898 for a Category
1 approach with three reference receivers;

® Oy qir is the airborne measurement error standard
deviation;

" Gp s i the standard deviation of residual errors
not directly attributable to ground of airborne error
(such as tropospheric decorrelation);

Opr_gnd; =VM Oy gna -

The maximum acceptable values of the standard deviations
Opr gnd> Opr ai» Opr res» are functions of satellite elevation
given in [2]. In this analysis, we first assume a Category 1
system with a class ‘B3’ ground facility (M = 3) and ‘B’
class airborne equipment as defined in [2]. Although we
will explicitly consider only variations in Gy g, it should
be noted that the method of analysis described below is in
principle applicable to airborne and residual errors as well.

When the actual ground standard deviation (o) differs from
the nominal value ( Opr_gnd, ) used to generate VPLy,, the

effective missed detection multiplier for the computed value
of VPLy; is given by
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Note that the B-value term is not present since it is invariant
with respect to changes in o. The associated MD
probability is then

Py (MD) = Q(kpg, ), €)



where the function Q(x) is defined as area to the right of x
under a standard normal density function (i.e., the ‘tail
probability’).

Clearly Py (MD) will in general be a strong function of
satellite geometry through the projection matrix S. In this
regard, a GPS constellation simulation was executed to
establish this sensitivity. The details of the geometry
simulation follow:

= Constellation: Nominal 24 satellite (SV)
constellation defined in RTCA DO-229A.

*=  Elevation Mask: 5 deg
w  Simulated Duration: 24 Hours

s LGF Location: Chicago O’Hare International
Airport

« SV QOutage Conditions: Both the complete 24 SV
constellation and worst-case (most sensitive) 22
SV constellation subsets were simulated.

s Geometries not meeting VPLy, < VAL using
nominal value of oy gq were excluded since
approaches would not be conducted in these cases.

In the first set of simulations, all 24 SVs were assumed to
be usable, and the true standard deviation o was varied
from nominal on all visible SVs. The resulting integrity
risk is shown in Figure 1 as a function of o/ Opr gnd, - The

discrete distribution of data points along the horizontal
(c/csprﬂgnd1 } direction in the figure corresponds to the

discrete values of G/Gpr‘gnd] simulated. The vertical

distribution of data points at each value of cs/cspr“gndl is

due to the varying geometries accumulated over a 24 hour
period. The upper bound integrity risk curve (solid)
represents the highest level of integrity risk over the 24 hour
duration. Note that when c/cpr_gnd = 1, the missed

detection probability attains a nominal value of Q(kng) =
0.0019.

Given that all 24 satellites are available, the results in
Figure 1 are undoubtedly conservative since it is unlikely
that broadcast 6 gg Would underestimate the true o for af/
visible satellites. In this regard, a second simulation was
performed varying ¢ on only one (the most integrity-risk-
sensitive) satellite for each geometry. The results are shown
in Figure 2. When compared with the results of Figure I,
integrity risk is reduced for values of /oy yq > 1 (as

expected) but increased for values of G/Gprugndl <1. The

latter increase is due to the fact that o is reduced on only

one SV (in contrast with Figure 1 where ¢ was reduced on
all SVs). Figure 3, which superposes the upper bound
curves from Figures 1 and 2, clearly shows the difference in
integrity risk sensitivity under the two sets of assumptions.

In general, however, it cannot be assumed that all 24
satellites will always be available for use. For example,
existing simulation results of LAAS operational availability
in the LAAS standard [2] are based on worst-case (lowest
resulting availability) 22 satellite subset geometries. In this
context, the simulations executed above were repeated for
all 22-satellite subset geometries. The resulting upper
bound sensitivity curves assuming o variation on all
satellites and o variation only on a single (most sensitive)
satellite is shown in Figure 4. The results clearly show that
in the presence of a modestly depleted constellation, there is
little difference in integrity risk sensitivity for the two
approaches. This result is readily explained by the fact that
when fewer satellites are available the effect in the position
domain of error variations on individual geometry-critical
satellites are more pronounced. For our analysis, we can
conservatively define the actual integrity risk sensitivity
curve for the H1 case as a piecewise superposition of the
two curves in Figure 4; for any value of c/ Cpr_gnd, » the

upper of the two curves is used.

Given that the conditional probability Py (MD| (y/’(rpr_gnd1 )
has been established, it is still necessary to define a
distribution for G/, yg, so that the overall risk
probability can be quantified. In this regard, it is well
known that the sample variance s* of ny independent

measurements derived from a gaussian distribution is Chi
Square distributed:

S
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Thus for a given computed value of s, the probability that &
lies in any specified range is easily computed. For example,
Figure 5 shows the resulting probability mass function

P(6/opr grd, ’S/Gpr_gndl ,ng) for the «case where
$/Gpr_gnd, = 0.9 and ny=20. The result is plotted together
with the conditional Py (MD]c/cp,_gnd]) curve already

established. Clearly, despite the fact that s is lower than
Opr_gnd, for this case, the likelihood that the actual value

of o exceeds G gng, is non-negligible. As the number of

available samples ng is increased, however, the likelihood
that o exceeds Gy gua decreases. Figure 6 illustrates the
case where n, = 80. Similarly, if the computed value of s is



lower, the likelihood that o exceeds & gnq, is also lower.
Figure 7 shows the case where n; = 20 and s/cp gng, =
0.7.

A parametric analysis was performed in which n; was varied
with discrete values 20, 50, 100, and 200, and s/cfp,_gnd1

between 0.7 and 1.3 (in increments of 0.01). The overall
H1 missed detection probability given s/O'pr_gnd1 and ng

was then computed numerically via
PHI (MD ’ s/opr_gndl ,ns) = ZPHI (MD l G/Gpr_gndl )X
82

Plofome_enas|$/opr_gnd; ns) s

The results are plotted in Figure 8, which shows
quantitatively how the H1 missed detection probability
increases as s/cspr gnd, increases and as n, decreases. The

results are plotted in terms of percentage error (above the
nominal value of 0.0019) in Figure 9.

To  ensure absolute

integrity in  an
Py (MDlS/Gpr*gndlans) should not exceed the nominal

sense,

specified value of 0.0019. However, the results in Figure 9
show that this criterion cannot be realistically attained
because an infinitely large sample set is required.
Nevertheless, it can be ensured that the missed detection
probability does not differ from the nominal value by a
significant amount. For example, Table 2 summarizes the
results obtained from Figure 9 assuming that a 5% tolerance
is acceptable. Under this assumption, the table quantifies
the minimum value of o, gqq, that may be broadcast

given any value of s obtained from n, samples. Clearly, the
broadcast Gp; gnq, must in general be larger than s. As

expected, however, the buffer factor (the amount by which s
must be scaled to define o, g4, ) approaches 1 as n;

grows large. (It should be noted that the quantitative results
in Table 1 apply for the H1 case only.)

1, Minimum Value of o, gnd,
50 1.16xs
100 1.09xs
200 1.05xs
500 1.02xs

Table 1: Sigma Buffer Factors for H1

HO Case

For the fault—free hypothesis, the vertical protection limit is
given by the following expression [2], [3]:
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When the actual ground standard deviation (o) differs from
the nominal value (G gng, ) used to generate VPLyy, the

effective missed detection multiplier for the computed value
of VPLyis given by
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where Kpg ¢ is 5.810 for Category 1 approach with three
reference receivers. The associated MD probability is

PHO(MD) = 2(3(kmd_ffc ) . (8)

The sensitivity analysis executed for the HI1 case was
repeated for HO. The resulting sensitivity of missed
detection probability for the HO case is quantified in Figure
10. As with the H1 case, Pyo(MD| s/Gy gng, Ds) increases as
S/Gpr gna increases and as ng decreases. In Figure 11, the
results of Figure 10 are plotted in terms of percentage error
(relative to the nominal value of 2Q(knq ) = 6.2x10°).

The results of the HO o-sensitivity analysis are summarized
in Table 2, where a 5% missed detection tolerance (relative
to nominal) has again been used. As with the HI case, the
buffer factor approaches 1 as ng becomes very large. Note
that, in general, HO o-sensitivity is greater than that found
for the HI case. This is due to the fact that a small variation
in o for a gaussian random variable will cause a larger
relative deviation in probability from the nominal value
when the nominal probability is small. Comparing the
buffer factors in Table 2 with those in Table 1, it is clear
that HO is the more restrictive case (the required buffer
factors are larger). Table 2 therefore serves to define the
minimum ¢ buffer factor.



1, Minimum Value of o gng,
50 1.29xs
100 1.16xs
200 1.09xs
500 1.04xs

Table 2: Sigma Buffer Factors for HO

CORRELATION SENSITIVITY ANALYSIS

In the preceding analysis, it was implicitly assumed that
ranging errors were uncorrelated across ground receivers.
Note, in fact, that any such correlation is not consistent with
the VPL equations since the Op; gyq, terms are always

divided by the number of receivers (to account for the
averaging of uncorrelated receiver measurements). In
reality, however, it is possible that some measurable
correlation exists. Furthermore, even if a negligibly small
correlation coefficient is computed from a finite sample set,
the statistical uncertainty in the estimate must also be
accounted for. Such uncertainty is lessened, as one would
naturally expect, as the sample size used to estimate
correlation coefficient increases.

To examine sensitivity to correlation, we assume that the
ground error standard deviation for any given reference
The effect of positive correlation

. .

racaivar 1g

receiver 1S Oyy nd, -
pr_gng,

between receivers when averaging M* errors can be (with
modest conservatism) modeled as an effective increase in ©

as follows:
G=0p gna, Y1+ (M ~Dp. )

where p is the maximum correlation coefficient between
any pair of receivers, M* = M for HO, and M*=M-1 for
H1. The sigma sensitivity analysis results (in particular, the
satellite geometry simulations) are directly applicable to
correlation sensitivity as well through the following simple
transformation:

2
_ (G/cpr_gndl ) -
M -1

(10)

HI Case

Using the transformation above, the horizontal axis of
Figure 3 may be rescaled in terms of p. The resulting upper
bound curve for the conditional probability Py;(MDJp) is
shown in Figure 12.

Now given any pair of reference receivers, each with n,
samples of measurement error, we may compute a sample
correlation coefficient r. To define a distribution for p
given r, we use a similar approach to that in the sigma
analysis except that the Chi-square distribution no longer
applies. In this case, however, we make use of the Fisher Z
statistic [6] which is approximately gaussian:

oy (T4 L1450 -3
N

Figure 13 illustrates an example probability mass function
P(p|r,n,) for r = 0.3, n, = 20 and finely spaced intervals of p.
(The Py;(MD|p) curve from Figure 12 is overlayed.) A
parametric analysis was then executed in which n, varied
with discrete values 20, 50, 100, 200, and 1000 and r varied
between -0.2 and 0.3, The overall H] missed detection
probability given p and n, was then computed numerically
using a summation procedure equivalent to the sigma
sensitivity case. The results are plotted in Figure 14, which
shows quantitatively how the HI missed detection
probability increases as r increases and as ng decreases.

When compared to the nominal missed detection
probability for H1 (0.0019) substantial increases in relative
integrity risk are clearly evident in the results. However,
this is a not unexpected result because the VPL equations
have no direct means to accommodate effect of positive
correlation, and furthermore, integrity risk is magnified by
uncertainty in correlation coefficient. Note, however, that
in principle correlation can be accounted for by simply
increasing the value of oy gqq, . For example for

precisely known values of error standard deviation (o) and
correlation coefficient (p) we may use any value of
Opr_gnd, such that

Opr_gnd, > oy l+(M*-Dp. (12)

However, to account for the fact that ¢ is not known
precisely (only the estimate s based on n, samples is
available), s in the equation above must be replaced with
a(ny)s, where a(n,) is the scale factor defined in Table 2.
Similarly, because p cannot be known precisely (only the
correlation coefficient estimate r based on n, samples is
available), p must be replaced in the equation above with a
buffered value p*, where p* is a function of r and n, that is
yet to be defined.

To determine the required value of p* for a given number or
samples n,, the conditional probability P(MD|p) was
recomputed assuming that the value of o gnq, has



already been buffered using the above equation for selected
values of p* between 0 and 0.5. The resulting curves are
given in Figure 15. Note that the curve corresponding to p*
= O (which represents the case where there is no buffering
On Opr gy, ) is identical to the P(MD|p) curve in Figure

12. As expected, the influence of non-zero correlation
coefficient on integrity risk is decreased as p* is increased
(i.e., as the buffer on 6, gyq, is increased).

For each of the p* curves in Figure 15, it is possible to
compute Py;(MDIr,n,) as was done for the p* = 0 case in
Figure 13. For example, the results for n, = 20 are plotted
in Figure 16. Note that the uppermost curve, which
corresponds to the case p* = 0, is identical to the n, = 20
curve on Figure 14. For a 5% acceptable tolerance on
integrity risk relative to the nominal value of 0.0019, it is
possible to obtain from Figure 16 the maximum value of r
allowable for a given value of p*. This result can also be
interpreted as the minimum value of p* given a compute
correlation coefficient estimate r. Figure 17 shows the
results for the n, = 20 case under consideration and also for
values of n, equal to 50, 100, 200, and 1000. It is clear
from Figure 17 that a nearly linear relationship (with unity
slope and positive y-intercept) exists between r and the
minimum acceptable value of p*. Thus the (minimum) p*
can thus be approximately defined by the simple linear
functions in Table 3. Note that p* must always be larger
than r in order to account for the statistical uncertainty due
to finite number of samples. As n, becomes large, however,
the minimum acceptable value of p* asymptotically
approaches r.

n, Minimum Value of p*
50 0.14 +r
100 0.08+r
200 0.05+r
500 0.02+r

Table 3: Correlation Buffer Parameters for H1

HO Case

The correlation sensitivity analysis executed for the H1 case
was repeated for HO. Figure 18 shows the resulting
minimum values of p* given a computed correlation
coefficient estimate r. Comparison of this figure with
Figure 17 shows that, as with the sigma sensitivity analysis,
the HO case is more restrictive because for a given
computed value of r the value of p* required to ensure a 5%
integrity risk tolerance is larger for the HO case than the H1
case. Hence the HO case must be the one used to define p*.

The approximate linear relations for HO derived from
Figure 18 are given in Table 4.

n, Minimum Value of p*
50 027 +r
100 0.18+r
200 0.12+r
500 0.06 +r

Table 4: Correlation Buffer Parameters for HO

WORST-CASE SENSITIVITY

The results generated thus far have been based on the
nominal functions for oy i and Gy, s defined in [2]. Since
these functions actually define the maximum permissible
values for these parameters, in practical application it is
likely that Gy s and Gy s Will actually be smaller. In this
case, it is expected that integrity risk will be more sensitive
to variations in Gy gng, - It is therefore also instructive to

examine the limiting scenario in which oy 4 and o s are
zero. We consider here only the HO case (because it has
already been shown to be more sensitive to variations in &
and p than H1). In this regard, Figure 19 shows the upper
bound curves for Puo(MD|G/o g, ) for the 22 SV

constellation case. The upper (solid) curve defines integrity
risk sensitivity when oy 4 and oy s are zero. The lower
(dashed) curve, which is included only for comparison,
corresponds to the case already covered where oy 4 and
Opr res hold their maximum permissible values. It is clear
that integrity risk sensitivity increased for all values of
0/ Gpr_gnd, reater than one. Note that in this region, where

the curves are defined by the case where G/c, 44, is

varied on all satellites simultaneously, integrity risk
sensitivity is invariant with respect to geometry for the case
where G, 4ir and Oy s are zero. This is true since equation
(7) reduces to

Koy o= T (13)
— o/On_ g,

Using the same methodology described in the sections
above, the minimum acceptable values for * and p* were
computed assuming an acceptable integrity risk tolerance of
5%. These results are given in Table 5 for Category 1
approach and M = 3. Note, as expected, that the buffer
parameters are slightly higher than those in Tables 2 and 4
(which were derived using the maximum permissible values
for Opr_air and Gpr__res)*



ng or n, Minimum c* Minimum p*
50 1.34xs 030 +r
100 1.18xs 020 +r
200 1.10xs 0.13+r
500 1.05xs 0.07 +r

Table 5: Sigma/Correlation Buffer Parameters
(Results for Category 1 and M = 3)

INTEGRITY RISK TOLERANCE

Taken together, the results of the sigma and correlation
analyses above demonstrate that any value of oy yq may be
broadcast provided that the following inequality is satisfied:

Op gnd > O y 1+ (M=Dp’ /N (14)

where o* = a(ny)s, p* = r + b(n,), and s and r are the
maximum values of standard deviation and correlation
coefficient for any receiver and reference receiver pair,
respectively. For the Category 1 case where M = 3 and a
5% relative missed detection (integrity risk) tolerance, the
values of a(-) and b(-) are given for a number of discrete

Tiac ofn in Ta
values of Tig and N, i Table 5.

Because the 5% integrity risk tolerance was arbitrarily
selected, it is necessary to quantify how the buffer
parameters vary with respect to integrity risk tolerance. In
this regard, Figure 20 shows the required value of the o
buffer factor as a function of the number of samples for
various values of integrity risk tolerance. As one would
naturally expect, the figure illustrates that for any given
value of ng, the buffer factor decreases as the integrity risk
tolerance is relaxed. Analogous behavior is exhibited for
the required correlation buffer parameter in Figure 21. In
both Figure 20 and 21, it is also clear that only marginal
reductions in buffer parameters will be realized for sample
sets larger than 200 points. However, it is equally clear that
sample sets smaller than 100 points will typically require
rather large buffer parameters.

SUMMARY

In this paper, the sensitivity of LAAS integrity risk was
investigated and quantified with respect to the statistical
uncertainty in the knowledge of reference receiver error
standard deviation and correlation between multiple
reference receivers. A detailed methodology was presented
to define the minimum acceptable buffer parameters for the
value of Op gua broadcast to the aircraft. This work

implicitly addressed only the gaussian error structures
associated with receiver thermal noise and diffuse
multipath. It is likely that additional buffering for the
effects of remaining errors, such as ground reflection
multipath or systematic reference receiver/antenna errors
will be necessary. If these errors are bounded in size they
can in principle be separately accounted for by introducing
a non-zero mean for the correction error in the computation
of VPL. Continuing work in this regard is underway.
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Figure 11: HO Integrity Risk vs. s/c (Relative Error)
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Figure 19: HO Integrity Risk Sensitivity to o-Variations -- 22 SV Case
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Figure 20: Sigma Buffer Factor vs. Number of Samples
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