
Improving Tracking Robustness Through
Interference Using Pilot Signals with a Deeply

Coupled Estimator
Logan Bednarz, Samer Khanafseh, Boris Pervan, Illinois Institute of Technology

BIOGRAPHY

Logan Bednarz obtained his Bachelor's and Master's Degree in Mechanical Engineering from Illinois Institute of Technology
(IIT), in 2022. He is currently a Ph.D. candidate in Mechanical and Aerospace Engineering at IIT, as well as a Navigation
Engineer at TruNav. His current research focuses on the development of an SDR platform to fuse GNSS/INS for a
comprehensive PVT and fault detection platform. His research interests also include novel methods for IMU data generation - as
well as using pilot signals and multi constellation signal planning, to subvert jamming and spoofing scenarios.

Dr. Samer Khanafseh is currently a Research AssociateProfessor at the Mechanical and Aerospace Engineering Department at
IIT. He received his M.S. and Ph.D. degrees in Aerospace Engineering from IIT, in 2003 and 2008, respectively. Dr. Khanafseh
has been involved in several aviation applications such as Autonomous Airborne Refueling (AAR) of unmanned air vehicles,
autonomous shipboard landing for NUCAS and JPALS programs and Ground Based Augmentation System (GBAS). He
published 13 journal articles and more than 30 conference papers. His research interests are focused on high accuracy and high
integrity navigation algorithms for close proximity applications, cycle ambiguity resolution, high integrity applications, fault
monitoring and robust estimation techniques. He was the recipient of the 2011 Institute of Navigation Early Achievement Award
for his outstanding contributions to the integrity of carrier phase navigation systems.

Dr. Boris Pervan is a Professor of Mechanical and Aerospace Engineering at IIT, where he conducts research on advanced
navigation systems. Prior to joining the faculty at IIT, he was a spacecraft mission analyst at Hughes Aircraft Company (now
Boeing) and a postdoctoral research associate at Stanford University. Prof. Pervan received his B.S. from the University of Notre
Dame, M.S. from the California Institute of Technology, and Ph.D. from Stanford University. He was the recipient of the IIT
Sigma Xi Excellence in University Research Award, Ralph Barnett Mechanical and Aerospace Dept. Outstanding Teaching
Award, Mechanical and Aerospace Dept. Excellence in Research Award, IIT University Excellence in Teaching Award, IEEE
Aerospace and Electronic Systems Society M. Barry Carlton Award, RTCA William E. Jackson Award, Guggenheim Fellowship
(Caltech), the Albert J. Zahm Prize in Aeronautics (Notre Dame), and the Institution of Navigation Kepler Award. He is an
Associate Fellow of the AIAA, a Fellow of the Institute of Navigation (ION), and Editor-in-Chief of the ION Journal Navigation.   

ABSTRACT

This paper shows the viability of improving tracking robustness of global navigation satellite systems (GNSS) pilot signals in
high interference and/or jamming conditions by deep coupling with inertial sensors using a Kalman filter. In this work, we
confront the limiting factors of typical tracking loops, including the dependency on pre-filtering or coherent averaging (Julien
2014), the adverse correlation effects that would otherwise come from integrating over the Doppler frequency of the incoming
signals (Borio et al. 2014, Julien 2014), biased inertial measurement sensor (IMU) accelerometer/gyroscope noise inputs, and
local oscillator (LO) phase noise (Misra and Enge 2001). Our deeply coupled Kalman filter is designed to specifically confront
these limitations. The use of a deeply coupled Kalman filter also allows for a well-defined analysis of the integrity of the filter’s
best state estimate, which can be used to expose noise sources which most quickly degrade estimate quality. Using this analysis,
the robustness of this and similar estimators to all noise levels given all available hardware can be extended and defined, and thus
provide a valuable asset not only to robustness, but also to estimator and sensing scheme design. We show that this early version
of our tracking algorithm is able to maintain signal lock in carrier to noise density ratios as low as 4 dBHz.



I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) signals are invaluable for many day-to-day navigation applications, but they also
must be dependable in high-interference environments. Given that GNSS signals are so critical for a variety of applications and
have such widespread use, they can become targets for malicious jamming attacks. To compound this issue, commercial jammers
costing as little as 40 USD are available for purchase online (Mukherji and Chandele 2022).

Over the years, several anti-jamming methods have emerged to combat these threats. For instance, combined data-pilot signal
acquisition (Borio et al. 2014), dual-antenna receiver implementations (Broumandan et al. 2020), and polarization-sensitive
arrays (Sun et al. 2022) represent a subset of the strategies employed to enhance signal reconstruction quality at the GNSS
receiver. It's well-understood that longer integration times correlate positively with the carrier to noise density ratio (C/N0),
which serves as a metric of signal reconstruction quality (Borio et al. 2014, Julien 2014). This understanding naturally leads to a
seemingly straightforward mitigation approach: extending the coherent integration time of the tracking loops. However, this is
where challenges arise. Conventional Phase Lock Loop (PLL) and Delay Lock Loop (DLL) tracking schemes using
data-carrying signals often struggle to extend integration times due to ambiguities in the navigation data bits. Additionally, these
schemes might not effectively account for system dynamics during integration, typically operating under the assumption that
signal parameters remain constant during said integration.

Our approach builds upon the foundational work presented in (Zhao et al. 2019). At its core, our method relies on a deeply
coupled Kalman Filter, which has been tailored to accommodate fluctuations in Doppler frequency and code delays. This filter
fuses IMU and GNSS measurements to generate precise user state estimates. Our approach takes a theoretical deviation from
(Zhao et al. 2019) in its handling of ambiguities in the navigation data bit. Instead of utilizing their adaptive model, we leverage
the pilot signal to eradicate the ambiguities introduced by the navigation data bit.

The term “coherent averaging” in this context deserves special attention. While our method doesn't literally extend the coherent
integration of our pilot signal measurements, the Kalman Filter plays a crucial role in mimicking this effect. Specifically, the
filter's low-pass action reduces the state covariance until it reaches a steady state value. For our purposes, we interpret this
stabilization as marking the conclusion of the coherent averaging period.

This work will demonstrate that the PLL and DLL can be replaced by the proposed deeply coupled Kalman filter to capture the
effect of extending the coherent integration time of our measurements while constantly accounting for the changing dynamics of
the system. We develop this filter to coast through jamming and high interference events - implying that we do not “cold start”
during a jamming event, for instance.

II. KALMAN FILTER MODEL

In this section, we develop the components required for the operation of our proposed Kalman filter. The Kalman filter, in
general, requires both a measurement model and a set of dynamics that can account for the independent states this measurement
model contains.

A typical signal measurement at the GNSS receiver is presented below:

𝑦 =  𝑎𝑅(𝑡 −  Δτ) exp{𝑖(2πΔθ)} + 𝑛 (1)

where we define as the signal amplitude, as the autocorrelation function evaluated at , the deviation between𝑎 𝑅(𝑡 − Δτ) Δτ
the actual spreading code delay and the signal local replica’s argument of the spreading code delay, represents theexp{𝑖(2πΔθ)}
in-phase and quadrature-phase components of the incoming signal, which has a complex argument defined by the deviation
between the incoming signal’s phase and the local replica’s account of that phase, and represents additive white gaussian noise𝑛
(AWGN). It's crucial to note that this initial form of measurement assumes the integration of the incoming signal and local
replica over one spreading code period. The rationale behind this representation, though intricate, will be elucidated later.
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finally represents the integer cycle ambiguity.𝑁

Considering the above representation, let's inspect the implications of substituting from equation (2) in equation (1):θ
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where we have extracted only the in-phase component of (1) for simplicity, although the same procedure can be applied to the
quadrature term. Here we see that the argument of the cosine is shifted by a factor of , which is an integer multiple of2π𝑁 2π
radians. Thus, and can be used interchangeably in (1).θ

𝑡𝑜𝑡𝑎𝑙
θ

Before we continue, note that the use of as a state will result in a direct positioning algorithm and that the integer ambiguityϱ
does not need to be resolved to estimate this position. We have now substantiated that substituting (2) and (3) into (1) captures a
new representation of the signal, which we will have to establish dynamics for.

Since the goal is to coast through an interference event, we assume that we have access to the ephemeris (navigation message),
and therefore can compute the satellite position and have a correction for . This results in the following unique states to beδ𝑡

𝑠
modeled by dynamics:
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The example dynamic models implemented here are a specialized 1D inertial measurement unit (IMU) model and a clock phase
error model. We will show that these two models capture the states in (5). We begin with the range which we can express as:
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where represents the receiver position and represents the space vehicle’s position. Note that this relation is algebraic, so we𝑟
𝑟 
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can substitute (6) into our measurement model.

Next, we employ the linearized IMU equations of motion to model the receiver position.
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where represents the receiver velocity, represents the unbiased accelerometer input, represents the accelerometer bias,𝑣 𝑓𝑢 𝑏 Ω
𝑖/𝑒

represents the rate of rotation of the earth, represents the gravitational acceleration on earth, represents the time constant of𝑔 τ
𝑏

the first order Gauss Markov process (FOGMP) for the bias state. indicates a deviation of a state linearized about some givenδ
point. The process noise on these equations comes from the AWGN sources and for their respective processes. Finishing𝑤
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the set of dynamics, we use a FOGMP similar to (9) for the ionospheric and tropospheric delays, and a two-state clock model for
the clock time bias.



We see that our new set of states produces the state vector we will use for our analysis:
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III. ASSERTIONS, LIMITATIONS

Chronologically, let’s evaluate what each equation reveals about the system we’re analyzing. Equations (2) and (3) are presented
in an algebraic form, indicating certain limitations. Specifically, factors such as multipath effects, phase windup, and ionospheric
scintillations are not accounted for in the preliminary analysis. Equations (8) and (9) represent a stark simplification when
contrasted with the conventional IMU equations of motion. The attitude and rotation matrices are absent, because of the 1-D
assumption made earlier. With this understanding, when we scrutinize Equation (6), it suggests that both and must be𝑟

𝑟
𝑟

𝑠𝑣
represented in a coordinate system that aligns with the line of sight (LOS). Consequently, any motion in the receiver's position
should strictly occur along this LOS. With this in mind, we are primed to understand this paper as an initial study of the
feasibility of such a method in its simplest possible form. Even with this model, we have the reach to understand the benefits of
employing this filter, rather than a PLL/DLL scheme.

IV. LINEARIZATION

Since we employ a Kalman filter, which is the optimal linear estimator, we cannot utilize our measurement in its current form.
Instead, we will use a Taylor series expansion for each state and linearize about the Kalman filter’s time update in our
measurement integration period; this means we realize the Kalman filter as an extended Kalman filter (EKF).

We should understand that the sine and cosine components of the measurement have defined derivatives everywhere, but
does not. In fact, this is why we accumulate the incoming measurements at all. We could represent the measurement𝑅(𝑡 −  Δτ)

as the instantaneous multiplication of the local replica and incoming signal, but the spreading code is laden with undefined
derivatives and highly nonlinear. By accumulating over one code period, we need only to contend with the derivatives of this
autocorrelation function.

We employ an early and late correlator for both the in-phase and quadrature-phase component of the accumulated signal. We use
these as measurements meant to bound the real code phase. This is shown in a figure below:

Figure 1: Example ACF with a representation of the early and late correlators example values. Note that the early and late
correlators are meant to capture the value of the ACF around the maximum value, thus providing a means to bound the peak, as
well as evaluate the derivative of the ACF, when linearizing, only where it is defined. Epsilon represents the correlator’s shift

from the expected code phase.



With all these pieces in place, we summarize the filter operation, pictorially, below:

Figure 2: Frequency response between input accelerometer noise and output position. The time constant here was taken to be 33
seconds.

Note that the top branch of the diagram involves extracting only the real part of the signal, and the imaginary part enters into the
lower branch. Not pictured are the low pass filtering operations after the correlation step.

Here represents the linearized observation matrix, is the nonlinear observation function, represents the state transition𝐻 ℎ Φ
matrix, and represent the time updated and measurement updated state vectors, represents the matrix of coefficients for -𝑥‾ 𝑥
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V. THEORETICAL ANALYSIS

Next, we conducted a feasibility analysis with the aim to determine the following:

● Identify which factors limit our effective coherent integration time

● Describe the performance under a range of 𝐶
𝑁

0

● Determine time constants, and effective filtering bandwidth of EKF

● Compare time constants to coherent integration period of PLL/DLL scheme

Starting with the limiting factors of our effective coherent averaging time, we examine the transfer functions of our models
between our process noise inputs and our state outputs. These obtained using the Laplace Transform:

𝐿{𝑥}̇ = 𝐿{𝐴𝑥 +  𝐵𝑢 +  𝐺𝑤}

(11)
𝑋(𝑠) =  [𝑠𝐼 − 𝐴]−1[𝐵𝑈(𝑠) + 𝐺𝑊(𝑠)]

Examining each time constant, the shortest was found to be between the accelerometer noise and the position output. The
frequency response is shown below:



Figure 3: Frequency response between input accelerometer noise and output position. The time constant here was taken to be 33
seconds.

Based on the filter's frequency response, we determined its time constant to be approximately 33 seconds. This can be
conceptually understood as the duration over which averaging persists. Notably, this suggests an equivalent coherent averaging
time that vastly exceeds the conventional limit of 20 milliseconds for data-carrying signals. This result was obtained for a of𝐶

𝑁
0

10 dB-Hz and the following IMU specifications were used:

Accelerometers

Bias Stability mg± 5

Random walk 57 µ𝑔/ 𝐻𝑧

Bias in-run instability 14 µ𝑔

Bias time constant 3600 𝑠

These are the same specifications used in (Kujur et al. 2023). Note that the gyroscope information is not included in our analysis
since we take the hypothetical 1D analysis described in the dynamic models.



We utilize the algebraic Riccati equation to analyze the steady state position standard deviation under for different values of .𝐶
𝑁

0

The results of this analysis are shown below:

○

Figure 4. Position standard deviation plotted against the received signal’s . Note that the linearization of the model degrades as state𝐶
𝑁

0

error increases, which can impart effects on the covariance that are not captured here.

Examining this figure reveals a promising performance at extremely low carrier to noise densities, but these are produced under a
simplified 1-D model and, in some of the cases shown above, assuming that linearization still holds for position errors on the
order of 10s of meters (considering the standard deviation results).

For these and all following analyses, was calculated using the wide-band versus narrow-band method:𝐶
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At this point, this pilot signal-based implementation promises sweeping improvements in the performance of tracking over
comparable methods, which typically report successful tracking for signals with in the range of ~8-10 dB-Hz (Ziedan 2005,𝐶

𝑁
0

Ziedan 2006). Additionally, the time constant allows for averaging over about 1500 times as long as for data-carrying signals.

VI. SIMULATION AND TESTING

Here we describe the simulation scenario and present some preliminary results of the filter. As was established in the assertion
and limitations section, the scenario is highly specialized for this initial testing of the filter. The receiver dynamics involve 1D
movement along the line of sight between the receiver and satellite. Additionally, the receiver velocity was enforced to be
constant. Besides the receiver dynamics, the two-state clock model used a bias process noise of seconds and a bias drift1 · 10−8

process noise of seconds/second.5 · 10−10

Next, a Skydel GNSS simulator was used to generate radio frequency data that was using a USRP device. This is represented,
pictorially, below:



Figure 5: Experimental setup.

During the simulation, the was altered in time using MATLAB’s “awgn” function, which allows for mixing the RF𝐶
𝑁

0

measurements with a noise profile. This mixing was used on the incoming RF data to simulate high interference. The
measurement covariance, which is defined by the inverse of the , converted from the logarithmic dB-Hz scale, to a linear𝐶

𝑁
0

scale.The performance of the tracking algorithm against the profile is shown below.𝐶
𝑁

0

Figure 6: Position standard deviation plotted time. Note that the steady state position standard deviation is about 2.5 meters.

The steady state covariance shown matches well with the prediction in Figure 4 for a received of 0 dB-Hz; however, the𝐶
𝑁

0

𝐶
𝑁

0

profile indicated that the mean value was about 4 dB-Hz with a 7 ms period of ’s at -4 dB-Hz starting near one second. At 4𝐶
𝑁

0

dB-Hz the expected steady state position standard deviation was about 1 meter.

The steady state value was reached in 5 seconds, rather than the predicted 33 seconds, but appealing back to our analogy about



the meaning of this time constant, this implies that the effective coherent integration time for the filter in this case is 5 seconds -
vastly higher than the 20 ms typically seen in other tracking loops.

VII. FUTUREWORK

The results and methodologies presented in this paper provide a foundation for several directions of further investigation and
development.

3D IMU Integration:While the current study was limited to a 1D IMU model with zero attitude, future work will
generalize the mathematical development of the dynamic model to 3D. This will account for the full range of motion
and dynamics in three-dimensional space, providing more comprehensive navigation solutions and improving the
fidelity of the tracking method.
Multiple Space Vehicles (SV) Tracking: The current method will be extended to tracking signals from multiple space
vehicles simultaneously—i.e., in a single state vector. This multi-SV approach may provide enhanced position accuracy
and redundancy, especially in challenging environments or scenarios with partial satellite visibility. The system's
architecture may evolve to resemble a vector tracking approach, as detailed in (Jin 2012).
Extended Kalman Filter (EKF) Sensitivity Analysis: Given the inherent non-linearities and complexities in the
GNSS signal model used, the sensitivity of the Extended Kalman Filter (EKF) to higher state deviations will be closely
examined. For instance, it was noted that for high phase error, the model linearization may become poor, leading to a
low-fidelity model.

By embarking on these future research directions, the aim is to make GNSS signal tracking more resilient to jamming and
interference.

VIII. CONCLUSION

Presented here is a novel method for signal tracking that involves leveraging the dataless nature of the pilot signal to achieve a
dramatically increased effective coherent integration time. Though the system is simplified for this early analysis, future work
generalizing this method to 3D scenarios and multiple space vehicles shows promise for this as a direct positioning and vector
tracking-type filter that may be able to perform in high interference and jamming conditions.

Importantly, the modularity of our model stands out. It allows a thorough examination of the filter's behavior across various noise
environments, incorporating an extensive range of oscillators and IMU configurations. This versatility ensures users can
empirically gauge the influence of different hardware configurations—whether in their possession or prospective
acquisitions—on performance metrics tailored to their specific applications.

Even in its nascent form, our tracking algorithm has demonstrated an ability to maintain signal lock in scenarios with carrier to
noise density ratios as low as 4 dBHz. As we look ahead, we remain optimistic about the broader implications of this work, not
only in fortifying GNSS robustness to high interference and jamming conditions.
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