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Abstract—In this paper, we describe, implement, and validate
the decomposition of the Complex Cross Ambiguity Functions
(CCAF) of spoofed Global Navigation Satellite System (GNSS)
signals into their constitutive components. We advance prior
work in [1] and [2] by specifically accounting for correlation of
thermal noise across the code delay and Doppler measurement
space and by increasing the pre-detection integration time to
reduce its overall impact. We also characterize the CCAF dis-
tortion by code cross-correlation and thermal noise. The method
is applicable to spoofing scenarios that can lead to Hazardous
Misleading information (HMI) and are difficult to detect by other
means. It can identify spoofing in the presence of multipath and
when the spoofing signal is power matched and offsets in code
delay and Doppler frequency are relatively close to the true
signal. Spoofing can be identified at an early stage within the
receiver and even applicable for dynamic users.

Index Terms—Complex Cross Ambiguity Function, GNSS
spoofing detection, measurement correlation, particle swarm
decomposition

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) are the founda-
tion of modern technological infrastructure. GNSS is used for
Positioning, Navigation, and Timing (PNT) worldwide with
applications in aviation, automated vehicle systems, telecom-
munication, finance, and energy systems. GNSS signals are
vulnerable to Radio Frequency Interference (RFI) such as jam-
ming and spoofing attacks. Jamming can deny access to GNSS
service while spoofing can create false positioning and timing
estimates that can lead to catastrophic results. This paper
focuses on the detection of intentional RFI known as spoofing,
a targeted attack where a malicious actor takes control of
the victim’s position and/or time solution by broadcasting
counterfeit GNSS signals [3].

Different methods have been proposed to detect spoofing,
such as: received power monitoring, which monitors the
response of automatic gain control (AGC) to detect when
an overpowered spoofing signal is broadcast; signal quality
monitoring (SQM), which tracks the distortion of the autocor-
relation function; RAIM checks on inconsistent sets of five
or more pseudoranges to allow the receiver to detect spoofing
with one (or sometimes) more false signals; signal direction of

arrival (DoA) estimation techniques using directional antennas,
or moving antennas, in a specified pattern to observe if all
satellite signals are broadcast from the same direction; inertial
navigation system (INS) aiding [4], which is based on drift
monitoring; and others [5] [6]. Each of these methods have
their own advantages and drawbacks.

CAF (Cross Ambiguity Function) monitoring approaches
[7], which exploit only the magnitude of the Complex CAF
(CCAF), can be used to detect spoofing but face difficulties in
environments with multipath and when the Doppler frequency
and code phase of the received signal are closely aligned with
the spoofed signal. There are machine learning and deep learn-
ing approaches (for example convolutional neural networks) to
detect GNSS spoofing attacks using CAF, but these methods
depend upon the availability of spoofing training data and are
limited to the datasets upon which they are trained [8]. A
sampled signal can be represented in the form of a complex
number, I (in-phase) and Q (quadrature), as a function of code
delay and Doppler offset. In all CAF monitoring concepts
prior to our work in [1] and [2], a receiver performs a two-
dimensional sweep to calculate the CAF by correlating the
received signal with a locally generated carrier modulated
by pseudorandom code for different possible code delay and
Doppler pairs. Spoofing is detectable when two peaks in
the CAF are distinguishable in the search space. This could
happen, for example, if a power matched spoofed signal does
not accurately align the Doppler and code phase with the true
received signal. In practice, because detection using the CAF
is not reliable under multipath or if the spoofed signals are
close to the true ones, we instead exploit the full CCAF.

We can decompose a CCAF made up of N contributing sig-
nals by minimizing a least-squares cost function [1]. Because
the optimization problem is non-convex, we implement a Parti-
cle Swarm Optimization (PSO) algorithm [9] to find the global
minimum. The algorithm can decompose a sum of GNSS
signals for a given satellite (e.g., true, spoofed, and multipath)
into its respective defining parameters—signal amplitudes,
Doppler frequencies, code delays, and carrier phases. The
same process is performed for each visible satellite, and the



estimated code phases are then used in the next step, which is
the detection function. Post-decomposition, a signal associated
with a given satellite outputs three extracted code phases,
associated with the true, spoofed, and multipath component.
At first it is unknown which code phase corresponds to either
authentic signal or spoofed signal. Decomposed code phases
are used for direct position estimation by combining different
combination sets. Out of all the combination sets, only two
will be consistent in a RAIM sense: when all the authentic
signals from each PRN are together in one set, and when all the
spoofed signals from each PRN are together in another. The
multipath code phases would not be self-consistent. Therefore,
we assert that spoofing is happening if more than one set
of code phases passes a RAIM test. The process is termed
“Inverse RAIM” because detection is based on an extra set
“passing” the RAIM test [2].

In this work, we move beyond [1] and [2] by: (A) increasing
the pre-detection integration time to minimize the overall
impact of thermal noise in the CCAF decomposition, and (B)
explicitly accounting for correlation of thermal noise across
the code delay and Doppler measurement space.

II. COMPLEX CROSS AMBIGUITY FUNCTION

The Complex Cross Ambiguity Function (CCAF) measure-
ments space discretely span the code delay (τ̄) and Doppler
frequency (f̄D). CCAF can be presented in complex form
as in Equation (1), the in-phase and quadrature components
are the real and imaginary parts of the signal, respectively.
Doppler frequency (f̄D) varies from (index) 1 to m and code
delay (τ̄) varies from 1 to n. The upper limit on the code
delay dimension is the length of the code itself and Doppler
frequency dimension usually well within ±4000 Hz.

CCAF =
I11 + jQ11 I12 + jQ12 · · · I1n + jQ1n

I21 + jQ21 I22 + jQ22 · · · I2n + jQ2n

...
...

...
...

Im1 + jQm1 Im2 + jQm2 · · · Imn + jQmn


m×n

(1)

The in-phase I and quadrature Q components of an uncor-
rupted signal (i.e., no spoofing, multipath, or thermal noise)
with code delay (τ), Doppler (fD), carrier phase θ, and am-
plitude

√
C are shown in Equations (2) and (3) and combined

in the complex representation in (4).

I
(√

C, τ, fD, θ; τ̄,f̄D, θ̄
)

=

√
C

TCO

∫ TCO

0

x(t− τ)x(t

− τ̄) cos
(
2π

(
fD − f̄D

)
t+ θ − θ̄

)
dt

(2)

Q
(√

C, τ, fD, θ; τ̄,f̄D, θ̄
)

=

√
C

TCO

∫ TCO

0

x(t− τ)x(t

− τ̄) sin
(
2π

(
fD − f̄D

)
t+ θ − θ̄

)
dt

(3)

S = I + iQ (4)

At present, to limit the size of the measurement data, we
constrain the carrier phase measurement space to θ̄ = 0. The
coherent integration time TCO can range from 1 to 20 mil-
liseconds, with the upper limit set to avoid integration across
boundaries of a GPS data bit D (t). Coherent integration is
performed to reduce the effects of thermal noise. Without data
modulation (e.g., a pilot signal) longer coherent integration
times may also be limited by satellite and receiver oscillator
error and drift and receiver motion. Performing the integrals
in Equations (2) and (3), Equation (4) can be expressed as (5)

S
(√

C, τ, fD, θ; τ̄ , f̄D, θ̄
)

=
√
CR(τ

− τ̄) sinc (π (fD

−f̄D
)
TCO

)
exp

(
iπ

((
fD − f̄D

)
TCO

+ θ − θ̄))

(5)

where

R(ξ) =


ξ
Tc

+ 1 −Tc < ξ < 0
−ξ
Tc

+ 1 0 < ξ < Tc

0 otherwise
(6)

and Tc is the duration of a single chip. To simplify the notation,
we define the amplitude a ≜

√
C. Summing N component

signals (for example, assuming a true satellite signal, a spoofed
signal, and a single multipath signal, N=3), we have

SN (g∥ τ̄ , f̄D, θ̄) =

N∑
s=1

ajR (τs − τ̄)

sinc
(
π
(
fDs − f̄D

)
TCO

)
exp

((
iπ

(
fDs − f̄D

)
TCO

)
+
(
θs − θ̄

))
(7)

where g ≜ (a1, τ1, fD1
, θ1, . . . , aN , τN , fDN

, θN ).

Strictly speaking, Equation (7) is true only for infinite length
random codes. For finite length PRN codes like GPS L1 C/A,
R (ξ) will have additional small, but non-zero, values outside
the domain ξ ∈ (−Tc, Tc). We ignore these for now but will
address their impact later.
In the absence of spoofing, multipath, thermal noise, and code
cross-correlation effects, the CCAF measurement landscape
looks like Fig. 1. In Fig, 2, the magnitude, real, and imaginary
parts of the CCAF are shown with code cross correlation and
thermal noise with C

N0
= 55 dB-Hz included. The real and

imaginary parts of the CCAF measurement space are clearly
distorted.



Fig. 1. Magnitude of nominal CCAF, in-phase and quadrature component
with any code cross-correlation and noise

Fig. 2. Magnitude of nominal CCAF, in-phase and quadrature component
with any code cross-correlation and noise



III. MEASUREMENT ERROR EFFECTS

Code phase, Doppler frequency and carrier phase mea-
surement errors are observed due to code cross-correlation,
multipath and thermal noise effects. Multipath occurs when
a satellite signal gets reflected from a surface and reaches
the receiving antenna by two or more paths. We account for
the presence of multipath directly in the decomposition of
the CCAF. However, it is important to better understand the
contribution of code cross correlation and thermal noise in
the distortion of the CCAF. GPS L1 signals are modulated
with C/A codes using Binary Phase Shift Keying (BPSK)
at a rate of 1.023 MHz and the code repeats after every 1
millisecond. C/A codes are designed to be orthogonal which
means they have strong autocorrelation and minimal cross-
correlation properties, but they are not completely orthogonal.
For GPS single frequency receivers are designed to track
multiple satellites at once, typically between 6 and 11 at
any given moment depending upon the time of day and user
location. To see the effect of the C/A codes cross correlation,
in Fig. 3 we show the magnitude of CCAF with code cross-
correlation of 6 satellites and with 12 satellites. To illustrate
the effects of thermal noise, in Figure 4, we show the CCAF
magnitude without code cross-correlation for C

N0
= 45 dB-Hz

and C
N0

= 35 dB-Hz. In Figure 5, we combine both code cross-
correlation (12 satellites) with the thermal noise and plot the
CCAF magnitude for C

N0
= 45 dB-Hz and C

N0
= 35 dB-Hz.

It is clear from these results that code cross-correlation
doesn’t contribute significantly to the CCAF the ‘noise floor.’
However, decreasing C

N0
from 45 dB-Hz to 35 dB-Hz causes

the noise floor to increase considerably as shown in Figure
5. When C

N0
is low, the measurement error decorrelation

(whitening) method described in Section VI should be used
before attempting signal decomposition.

IV. SPOOFING

GNSS spoofing techniques consist of broadcasting fake
GNSS signals with the goal of taking control of a GNSS
receiver and producing false results for positioning or timing
or both. A spoofing attack can be very sophisticated by repli-
cating and transmitting the signal parameters (amplitude, code
phase, and Doppler) relatively close to the authentic signal
parameters. However, it is very hard to replicate the precision
of carrier phase, and we want to exploit this by observing
the CCAF. When a spoofer initiates a subtle spoofing attack,
it generates a signal with the same code phase and Doppler
frequency pair as the authentic signal, and then slowly pulls
away the code phase/Doppler frequency. A chip is 300 m in
length (for the GPS L1 signal), and a change in a fraction of
a chip can lead to a significant change in the PNT solution.
Newer L5 signals have a faster chipping rate, and one chip
length is 30 meters. We are focusing on scenarios where the
spoofing signals are within ±1 chip.

When a spoofed signal is present and the code delays and
Doppler frequencies of the signals are not closely aligned, two
peaks are visible in the magnitude of the CCAF. A case like

Fig. 3. Magnitudes of CCAF in presence of code cross correlation with 6
and 12 satellites

this is shown in Figure 6 along with the real and imaginary
parts of CCAF. The two peaks merge if the code delays
and Doppler frequencies are closely aligned. We are showing
an example where the spoofed and true signals have equal
amplitudes but differ in code phase by 0.1 chip, Doppler by 5
Hz, and carrier phase by 90 degrees. In Figure 7, we are show-
ing the magnitude of the spoofed CCAF when code delays
and Doppler frequencies are closely aligned for the true and
spoofed signals, the difference between spoofed and true signal
in magnitude, real and imaginary part of CCAF respectively.
Clearly, this example shows that the full CCAF has more
information than just the magnitude of CCAF. Figures 6 and
7 are plotted with code cross-correlation and C

N0
= 45 dB-Hz.

Next, we show the results of decomposing the spoofed CCAF
into signals parameters using a global optimization algorithm
that minimize a least square cost function.

V. CCAF DECOMPOSITION

In our previous work, we have shown the capability of a
particle swarm optimization algorithm [9] to decompose the



Fig. 4. Magnitudes of CCAF for C
N0

= 45 dB-Hz and C
N0

= 35 dB-Hz
without code cross-correlation

CCAF into its constituent signals. Here, we are incorporating
the thermal noise and code cross correlation in our analysis.
We show that for C

N0
= 55 dB-Hz and C

N0
= 45 dB-Hz, the

estimated signal parameters (ĝ) are very close to the true
parameters (g) as shown in case 2 and case 4, when the
cost function includes the full CCAF i.e. including phase. In
contrast, when the cost function use only the magnitude of the
CCAF, the estimated signal parameters (ĝ) are far off from
the true parameters (g) as shown in case 1 and case 3. These
results include code cross-correlation with 12 satellites. And
the magnitude of CCAF for C

N0
= 55 dB-Hz and C

N0
= 45 dB-Hz

is shown in Figure 8 and 9 respectively.

VI. MEASUREMENT MODELING

It is clear that the noise is correlated over the measurement
space as we are plotting the noise floor without any signal
present at C

N0
= 35 dB-Hz in Figure 10. In order to implement

Measurement correlation to reduce the effect of noise, we
reshape the CCAF as expressed in Equation (8) as a 2mn× 1

Fig. 5. Magnitudes of CCAF for C
N0

= 45 dB-Hz and C
N0

= 35 dB-Hz with
code cross-correlation



Fig. 6. Magnitude, in-phase and quadrature component of spoofed CCAF for
C
N0

= 45 dB-Hz with Code Cross-Correlation when code delay and Doppler
frequency pair of authentic signal and spoofed signal are far apart

Fig. 7. Magnitude, difference, in-phase and quadrature component of spoofed
CCAF for C

N0
= 45 dB-Hz with Code Cross-Correlation when code delay and

Doppler frequency pair of authentic signal and spoofed signal are near each
other



Fig. 8. Magnitude of spoofed CCAF for C
N0

= 55 dB-Hz Fig. 9. Magnitude of spoofed CCAF for C
N0

= 45 dB-Hz



Fig. 10. Noise floor without any signal present for C
N0

= 45 dB-Hz

measurement vector with measurement error due to thermal
noise distributed as N(0, V ).

z ≜ CCAF =
[
I11 Q11 . . . Im1 Qm1

I12 Q12 · · · Im2 Qm2 · · · Imn Qmn

]T
2mn×1

(8)

The associated measurement error covariance matrix is V σ2,
with V as defined in Equation (9) and its components in
Equations (10) through (12). The derivations are provided in
the appendix. The variance σ2 is a scalar whose value, N0

2TCO
,

is not relevant to the development that follows.

V = Cov (CCAF error) =

E



I11I11 I11Q11 I11I21 · · · I11Qmn

Q11I11 Q11Q11 Q11I21 · · · Q11Qmn

I21I11 I21Q11 I21I21 · · · I21Qmn

Q21I11 Q21Q11 Q21I21 · · · Q21Qmn

...
...

...
...

...
QmnI11 QmnI11 QmnI21 · · · QmnQmn


2mn×2mn

(9)

E (IijIkl) =

(
1− |τ̄j − τ̄l|

TC

){
sinc

(
2π

(
f̄Di

− f̄Dk

)
TCO

)
+sinc

(
2π

(
f̄Di + f̄Dk

)
TCO

)}
(10)

E (IijIkl) =

(
1− |τ̄j − τ̄l|

TC

){
sinc

(
2π

(
f̄Di

− f̄Dk

)
TCO

)
− sinc

(
2π

(
f̄Di + f̄Dk

)
TCO

)}
(11)

E (IijQkl) = E (QijIkl)

= (1 −|τ̄j − τ̄l|
TC

){
sinc

(
π
(
f̄Di

−f̄Dk

)
TCO

)
sin

(
π
(
f̄Di

− f̄Dk

)
TCO

)
+ sinc

(
π
(
f̄Di

+ f̄Dk

)
TCO

)
sin

(
π
(
f̄Di

+f̄Dk

)
TCO

)}
(12)

and i and k are the indices of the Doppler frequencies
(
f̄D

)
,

which vary from 1 to m, and j and l are the indices of the
code delays (τ̄) measurements, which vary from 1 to n.
We can write our measurements model in the general from

z2mn×1 ≜ CCAF = SN

(
g | τ̄ , f̄D

)
2mn×1

+ v2mn×1 (13)

where
v ∼ N (0, V2mn×2mn) . (14)

Weighting (i.e., ’whitening’) our measurements, we ohtain

z′2mn×1 = V − 1
2 z2mn×1 =

V − 1
2SN

(
g | τ̄ , f̄D

)
2mn×1

+ v′2mn×1

(15)

where
v′ ∼ N (0, I2mn×2mn) (16)

The final measurement model is then

z′ = V − 1
2SN

(
g | τ̄ , f̄D

)
+ v′. (17)

To decompose the signal into its constituent elements, we then
seek to minimize the cost function.

J =
∥∥z′ − SN

(
ĝ | τ̄ , f̄D

)∥∥2 (18)

VII. CONCLUSION

In this paper, we describe a method to decompose the
Complex Cross Ambiguity Function (CCAF) into its com-
ponent signals (authentic, spoofed, and multipath). We show
that the effect of code cross-correlation are smaller relative
to that of thermal noise. To account for and help mitigate
the effects of the latter, we introduce a new CCAF error
decorrelation method. Future efforts will include integrating
inertial sensors with CCAF decomposition and inverse RAIM
that will mitigate spoofing attacks even for dynamic users.
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APPENDIX

n(ω, τ, φ) =
1

T

∫ T

0

n(t)x(t− τ)ej(ωt+φ)dt
(19)

n(ω, τ, φ) = nI(ω, τ, φ) + jnQ(ω, τ, φ) (20)

E {nI (ω1, τ1, φ1)nI (ω2, τ2, φ2)} (21)

Let τ2 ≥ τ1, |τ2 − τ1| ≤ TC

E {nInI}

= E

{
1

T

N−1∑
n=0

∫ (n+1)TC+τ1

nTC+τ2

n(t1) cos (ω1t1

+φ1) dt1 ·
1

T

N−1∑
n=0

∫ (n+1)TC+τ1

nTC+τ2

n (t2) cos (ω2t2

+φ2) dt2}

(22)

E {nInI}

=
1

T 2

N−1∑
n=0

∫ (n+1)TC+τ1

nTC+τ2

cos (ω1t1

+φ1)

N−1∑
n=0

∫ (n+1)TC+τ1

nTC+τ2

E {n (t1)n (t2)} cos (ω2t2

+φ2) dt2dt1

(23)

E {nInI}

=
1

T 2

N−1∑
n=0

∫ (n+1)TC+τ1

nTC+τ2

cos (ω1t1

+φ1)

N−1∑
n=0

∫ (n+1)TC+τ1

nTC+τ2

N0δ (t1 − t2) cos (ω2t2

+φ2) dt2dt1

(24)

Using
∫
g(x)δ (x− x0) dx = g (x0), we can express.∫

δ (t1 − t2) cos (ω2t2 + φ2) dt2 = cos (ω2t1 + φ2) (25)

Combining (25) & (26), we get

E {nInI}

=
1

T 2
N0

N−1∑
n=0

∫ (n+1)TC+τ1

nTC+τ2

cos (ω1t1

+φ1) cos (ω2t1 + φ2) dt1

(26)

Using the trigonometric identity∫
cos(ax+ b) cos(cx+ d)dx =

sin[(a− c)x+ b− d]

2(a− c)

+
sin[(a+ c)x+ b+ d]

2(a+ c)

Equation (26) becomes,

E {nInI}

=
1

2T 2
N0

N−1∑
n=0

{
sin ((ω1 − ω2) t+ φ1 − φ2)

ω1 − ω2

∣∣∣∣(n+1)TC+τ1

nTC+τ2

+
sin ((ω1 + ω2) t+ φ1 + φ2)

ω1 + ω2

∣∣∣∣(n+1)TC+τ1

nTC+τ2

}
(27)

E {nInI}

=
1

2T 2
N0

N−1∑
n=0

{[
sin ((ω1 − ω2) ((n+ 1)TC + τ1) + φ1 − φ2

ω1 − ω2

− sin ((ω1 − ω2) (nTC + τ2) + φ1 − φ2)

ω1 − ω2

]
+

[
sin ((ω1 + ω2) ((n+ 1)TC + τ1) + φ1 + φ2)

ω1 + ω2

− sin ((ω1 + ω2) (nTC + τ2) + φ1 + φ2)

ω1 + ω2

]}
(28)

Simplifying by breaking the equation into multiple parts

E {nInI} = 1
2T 2N0

∑N−1
n=0 {[A−B] + [C −D]} (29)

where

A =
sin ((ω1 − ω2) ((n+ 1)TC + τ1) + φ1 − φ2)

ω1 − ω2

B =
sin ((ω1 − ω2) (nTC + τ2) + φ1 − φ2)

ω1 − ω2

C =
sin ((ω1 + ω2) ((n+ 1)TC + τ1) + φ1 + φ2)

ω1 − ω2

D =
sin ((ω1 + ω2) (nTC + τ2) + φ1 + φ2)

ω1 − ω2



Using expression of trigonometric summation of finite series

N−1∑
n=0

sin (a1 + b) =
sin(Nb/2)

sin(b/2)
sin

(
a1 +

(N − 1)b

2

)
From A

a1 = (ω1 − ω2) (TC + τ1) + φ1 − φ2

b = (ω1 − ω2)nTC

N−1∑
n=0

sin (a1 + bn) =
sin

(
(ω1 − ω2)

T
2

)
sin

(
(ω1 − ω2)

TC

2

) sin ((ω1

−ω2) (TC + τ1) + φ1 − φ2

+(ω1 − ω2)TC
(N − 1)

2

)
N−1∑
n=0

sin (a1 + bn) =
sin

(
(ω1 − ω2)

T
2

)
sin

(
(ω1 − ω2)

TC

2

) sin ((ω1

−ω2)

(
T

2
+

TC

2
+ τ1

)
+ φ1 − φ2

)

From B
a2 = (ω1 − ω2) τ2 + φ1 − φ2

b = (ω1 − ω2)nTC

N−1∑
n=0

sin (a2 + bn) =
sin

(
(ω1 − ω2)

T
2

)
sin

(
(ω1 − ω2)

TC

2

) sin ((ω1

−ω2) τ2 + φ1 − φ2 + (ω1

−ω2)TC
(N − 1)

2

)
N−1∑
n=0

sin (a2 + bn) =
sin

(
(ω1 − ω2)

T
2

)
sin

(
(ω1 − ω2)

TC

2

) sin ((ω1

−ω2)

(
T

2
− TC

2
+ τ2

)
+ φ1 − φ2

)
From C

c1 = (ω1 + ω2) (TC + τ1) + φ1 + φ2

d = (ω1 + ω2)nTC

N−1∑
n=0

sin (c1 + dn) =
sin

(
(ω1 + ω2)

T
2

)
sin

(
(ω1 + ω2)

TC

2

) sin ((ω1

+ω2)

(
T

2
+

TC

2
+ τ1

)
+ φ1 + φ2

)

From D

c2 =(ω1 + ω2) τ2 + φ1 + φ2

d = (ω1 + ω2)nTC

N−1∑
n=0

sin (c2 + dn) =
sin

(
(ω1 + ω2)

T
2

)
sin

(
(ω1 + ω2)

TC

2

) sin ((ω1

+ω2)

(
T

2
− TC

2
+ τ2

)
+ φ1 + φ2

)

Putting all the parts back together, we get

E {nInI} =

N0

2T 2

{
1

ω1 − ω2

sin((ω1 − ω2)
T
2 )

sin((ω1 − ω2)
TC

2 )

[
sin

(
(ω1 − ω2)

(
T

2

+
TC

2
+ τ1

)
+ φ1 − φ2

)
− sin

(
(ω1 − ω2)

(
T

2
− TC

2
+ τ2

)
+ φ1 − φ2

)]
+

1

ω1 + ω2

sin
(
(ω1 + ω2)

T
2

)
sin

(
(ω1 + ω2)

TC

2

) [sin((ω1 + ω2)

(
T

2
+

TC

2

+τ1) + φ1 + φ2)

− sin

(
(ω1 + ω2)

(
T

2
− TC

2
+ τ2

)
+ φ1 + φ2

)]}
(30)

And using the Taylor series approximation,

sin(αX + β) ≈ sin(αX̄ + β) + α cos(αX̄ + β)δX

where
X = X̄ + δX

δX =
TC

2
+τ1+

TC

2
−τ2 = TC+τ1−τ2 = TC

(
1− τ2 − τ1

TC

)

E {nInI} =

N0

4T

{
sinc((ω1 − ω2)

T
2 )

sin((ω1 − ω2)
TC

2 )
[(ω1

−ω2) cos

[
(ω1 − ω2)

T

2
+ φ1 − φ2

]
(TC

+τ1 − τ2)]

+
sinc

(
(ω1 + ω2)

T
2

)
sin

(
(ω1 + ω2)

TC

2

) [(ω1

+ω2) cos

[
(ω1 + ω2)

T

2
+ φ1 + φ2

]
(TC

+τ1 − τ2)]}

(31)

E {nInI} =

N0

2T

{
sinc((ω1 − ω2)

T
2 )

sinc((ω1 − ω2)
TC

2 )
[cos [(ω1

−ω2)
T

2
+ φ1 − φ2

](
1− τ2 − τ1

TC

)]
+

sinc
(
(ω1 + ω2)

T
2

)
sinc

(
(ω1 + ω2)

TC

2

) [cos [(ω1

+ω2)
T

2
+ φ1 + φ2

](
1− τ2 − τ1

TC

)]}
(32)



Since,
- (ω1 − ω2)

TC

2 ≪ 1 & (ω1 + ω2)
TC

2 ≪ 1
- sinc

(
(ω1 − ω2)

Tc

2

)
≈ sinc ((ω1+ ω2)

Tc
2

)
≈ 1

E {nInI} =

N0

2T

(
1− τ2 − τ1

TC

){
sinc((ω1 − ω2)

T

2
) [cos [(ω1

−ω2)
T

2
+ φ1 − φ2

]
+ sinc

(
(ω1 − ω2)

T

2

)
[cos [(ω1

+ω2)
T

2
+ φ1 + φ2

]]}
(33)

E {nInI} =

N0

2T

(
1− τ2 − τ1

TC

){
sinc((ω1 − ω2)

T

2
) cos ((ω1

−ω2)
T

2

)
+ sinc

(
(ω1 + ω2)

T

2

)
cos ((ω1

+ω2)
T

2

)}
(34)

Using the expression,

sincx cosx =
sinx

x
cosx =

sin 2x

2x
= sinc 2x (35)

Finally,

E {nInI} =
N0

2T

(
1− τ2 − τ1

TC

)
{sinc ((ω1 − ω2)T )

+ sinc ((ω1 + ω2)T )}
(36)

And when τ1 ≥ τ2, |τ1 − τ2| ≤ TC

E {nInI} =
N0

2T
(1− |τ2 − τ1|

TC

)
{sinc ((ω1 − ω2)T )

+ sinc ((ω1 + ω2)T )}
(37)

Similarly, we can also solve for

E {nQnQ} =
N0

2T
(1− |τ2 − τ1|

TC

)
{sinc ((ω1 − ω2)T )

− sinc ((ω1 + ω2)T )}
(38)

E {nQnI} = E {nInQ}

=
N0

2T
(1 −|τ2 − τ1|

TC

)
{sinc ((ω1

−ω2)
T

2

)
sin

(
(ω1 − ω2)

T

2

)
+ sinc ((ω1

+ω2)
T

2

)
sin

(
(ω1 + ω2)

T

2

)}

(39)


