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ABSTRACT  

 

In this paper, we develop new stochastic orbit and clock error models for positioning, fault detection, and integrity monitoring 

over time. This work is intended for time-sequential navigation systems including Global Navigation Satellite Systems (GNSS) 

integrated with inertial navigation systems (INS) or dual-frequency, multi-constellation, sequential Advanced Receiver Auton-

omous Integrity Monitoring (ARAIM).   

 

INTRODUCTION     

 

GNSS provides worldwide positioning but requires the visibility  of four or more satellites and is vulnerable to jamming and 

spoofing attacks. On the other hand, INS can be used as a dead reckoning sensor to estimate displacements over time with 

respect to an initial position.  INS-based estimation errors drift due to the integration of sensor errors over time.  Combining 

INS and GNSS, for example in a Kalman Filter (KF), can limit  the drift in INS positioning errors while providing continuity 

through sky-obstructed areas and robustness against external GNSS jamming and spoofing attacks [1]. GNSS/INS integration 

relies on filtering measurements over time, which, in turn, requires robust modeling of stochastic errors, including time corre-

lation. 



 

 

 

For aircraft navigation, the baseline version of ARAIM  uses carrier smoothed code (CSC) measurements at one instant in time 

to provide a ósnapshotô navigation solution [2], [3], [4].  However, in [5], we showed that the additional exploitation of satellite 

motion over time provides superior positioning performance and tighter PLs than baseline ARAIM.  Sequential ARAIM  algo-

rithms (KF, for example) open the possibility to extend the scope of ARAIM  applications beyond aircraft navigation, to rail, 

harbor, or arctic operations.  

 

To implement time-sequential ARAIM  or inertial-GNSS integration, one must ensure that the error models implemented in the 

KF properly account for time correlation. In both applications, dynamic models for three main GNSS error sources are needed: 

orbit and clock errors, tropospheric delay, and multipath. It was shown in [6] and [7] that assuming a large measurement error 

correlation time constant does not necessarily guarantee an upper bound on the positioning error variance.  More sophisticated 

methods are needed, such as those also developed in [6] and [7].  In this paper, following on preliminary work in [8], we now 

focus on developing robust stochastic models for GNSS orbit and clock errors, which are the main contributors to ranging error 

for dual-frequency GNSS users. 

 

In [9], over-bounding theory (see also [10], [11]) was used to find upper bounds on the variance of orbit and clock errors for 

both the GPS and Galileo satellites. Unfortunately, these snapshot models are insufficient for time-sequential implementations 

because they do not address the stochastic dynamics of these errors over time.   

 

In [6], an analytical bound on the integrity risk for time-sequential linear estimators was developed using Autocorrelation 

Function (ACF) bounding. This approach, although simple to implement, requires continuous, cumulative storage of all data 

used by the estimator, and therefore is not suitable for KF implementations, except for low-order systems and very short time 

intervals. More recently, the concept of Power Spectral Density (PSD) bounding, which was used in [12], has proven to be 

much more flexible and powerful than ACF bounding. [13] outlines an integrity monitoring method using Power Spectral 

Density (PSD) bounding. It also has the advantages of being less restrictive and more intuitive than autocorrelation bounding. 

Modeling by PSD bounding is compatible with Kalman filtering, and is not restricted to fixed-interval implementations, unlike 

ACF bounding. 

 

In this work, we derive new GNSS orbit and clock error models using PSD bounding.  Clock errors are analyzed per satellite 

clock type (Rubidium versus Cesium for GPS, and Rubidium versus Passive Hydrogen Masers for Galileo), considering both 

the orbit and clock error distributions, and their PSDs.

 

 

ORBIT  AND CLOCKS ERROR CHARACTERIZATION  OVER TIME  

 

This section describes the process used to generate orbit and clock errors. Input repositories are described as well as the data 

they contain. To generate orbit and clock errors, two types of inputs are required: reference and broadcast navigation data. Both 

of these data files are obtained from the Multi -GNSS EXperiment (MGEX) repositories. The following two sub-sections de-

scribe these inputs.  

 

Reference orbit  and clocks 

 

The MGEX service was initiated by the International GNSS Service (IGS) to create a single GNSS data service for multiple 

constellations. MGEX is comprised of several Analysis Centers (ACs) which independently compute their own GNSS orbit 

and clock products. For this work, we use precise orbit data from two ACs: CODE for GPS and CNES for Galileo, and we will  

consider them to be our truth reference (see repository [14]). Note that the reference products have an accuracy of 2.5 cm (orbit 

accuracies are 1D mean RMS values over the three XYZ geocentric components). Because we are interested in characterizing 

orbit and clock errors over relatively short periods of time (several hours), the 15 min sampling period of these files is insuffi-

cient, so the data is therefore be interpolated to 30 s. In this paper we use an 8th order Lagrange polynomial (according to the 

analysis in [15]). Clocks errors are random walk processes and should not be interpolated. Instead, we use the clock products 

directly from IGS, which are provided at a 30 s sampling interval.  



 

 

 
Figure 1: Errors generation 

Broadcast ephemerides 

 

Broadcast ephemerides are stored in Receiver Independent Exchange (RINEX) formats that contain 24 hours of navigation 

message. This work makes use of Stanford University's ósuglô files for GPS satellites and óbrdcô from CNES for Galileo (see 

repositories [16] and [17]). Those institutions were chosen among several others because their cleaning and validation algo-

rithms ensured a limited amount of residual file recording, storing, and labeling errors.  

 

Orbit  and clock error s  

 

Satellite orbit and clock errors are obtained by differencing the satellite orbit and clock derived from the broadcast ephemerides 

from the reference orbits (as shown in Figure 1). Reference orbits are provided with respect to the center of mass (CoM) of the 

satellite, whereas broadcast ephemerides are decoded with respect to the satelliteôs antenna phase center (APC), hence they 

need to be converted to the same reference point (in this case, the APC). The offset for this conversion is provided in the 

ANTenna EXchange (ANTEX) files [18] for each GPS and Galileo satellites. After correcting for the offset, orbit and clock 

errors are obtained by differencing reference and broadcast orbit and clocks. The final errors are then converted to the satellite-

referenced radial, along-track, and cross-track frame. Note that ranging errors are affected by two types of errors: the clock 

errors which are non-dimensional and affect every direction equally, and the projection of the satellite position error onto the 

line of sight, which is mainly radial. Therefore, orbit and clock errors are computed as radial-plus-clock errors. Figure 2 shows 

example radial-plus-clock errors for the GPS and Galileo satellites in December 2018.  

 

 
Figure 2: Time evolution of Radial Plus Clock errors for GPS (left) and Galileo (right) satellites in December 2018 



 

 

In addition, GPS ephemerides are broadcast every 2 hours. When a new set of GPS ephemerides is received, the old one is still 

valid for two more hours, although most users will  decide to use the new set as soon as they receive it. This new upload creates 

a ójumpô in the estimated satellite position. To mitigate this effect, the broadcast ephemerides from the current and following 

sets of ephemerides are interpolated in the position domain to ensure a continuous transition over the two-hour overlap period. 

The process used for Galileo ephemerides is similar and is explained in [8].   

 

Impact of satellite clock on orbit  and clock errors  

 

There exist three main categories of space-qualified atomic clocks used for satellite navigation: Rubidium or Rubidium Atomic 

Frequency Standard (Rb or RAFS), Cesium (Cs), and Passive Hydrogen Maser (PHM). Over the years, GPS satellites have 

been equipped with several combinations of the clocks. GPS blocks II/IIA  carried two Cs and two Rb clocks, blocks IIR and 

IIR-M contained three Rb clocks, and blocks IIF contained two Rb and one Cs clocks. Galileo satellites, on the other hand, use 

PHM as their primary clocks and RAFS as secondary. Table 1 and Table 2 summarize the GPS and Galileo clocks and block 

numbers associated with each PRN for the time periods considered in this work (year 2018). 

 

PRN 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 

Clock Rb Rb Rb Rb Rb Rb Cs Rb Rb Rb Rb Rb Rb Rb Rb Rb 

Block IIF IIR IIF IIR IIF IIR IIF IIF IIF IIR IIR IIR IIR IIR IIR IIR 

 

PRN 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Clock Rb Rb Rb Rb Rb Rb Cs Rb Rb Rb Rb Rb Rb Rb Rb 

Block IIA IIR IIR IIR IIR IIR IIF IIF IIF IIF IIR IIR IIF IIR IIF 
Table 1: Clocks and blocks of each GPS satellite as of the period of this study (2018) 

From Table 1, we can see that most GPS satellites are using a Rb clock as their main clock. Only two satellites use Cs clocks. 

From Table 2, we can see that most Galileo satellites are PHM satellites and that only 3 of them are RAFS. 

 

PRN 1 2 3 5 7 8 9 11 12 13 14 15 18 

Clock PHM PHM PHM PHM PHM PHM PHM RAFS PHM PHM PHM PHM PHM 

 

PRN 19 20 21 22 24 25 26 27 30 31 33 36 

Clock PHM RAFS PHM RAFS PHM PHM PHM PHM PHM PHM PHM PHM 
Table 2: Clocks of each Galileo satellite as of the period of this study (2018) 

A comparison in [19] of atomic frequency standards among the various constellation for timescales ranging from 1 s to 1 day 

showed that the stabilities among various clock types could differ by a factor of up to 10 and were generally better for Rb and 

PHM clocks (in particular, GPS IIF Rb and Galileo PHM ). 

 

 
Figure 3: Time series of GPS (left) and GAL (right) orbit and clock errors for various satellite clocks 



 

 

This observation is illustrated in Figure 3, which shows example time series of GPS (left) and Galileo (right) clock errors for 

each satellite clock type during March 2018. For GPS, the upper plot shows the clock error of the Rb clock of PRN01 and the 

lower plot shows the same for the Cs clock of PRN08. The Rb clocks seem to be more stable and oscillate within ρ Í. The 

Cs clock on the other hand has larger error variations that reach up to ς Í. For Galileo clocks however, both PHM and RAFS 

clock errors have a similar behavior and remain between πȢυ Í. The difference between satellite clock errors are therefore 

more prominent in GPS than in Galileo. 

 

Before attempting to model any observed orbit and clock errors, we must first ensure that they are stationary over the durations 

used in the modeling. 

 

 

ORBIT  AND CLOCK  ERRORS STATIONARITY  ANALYSIS  

 

For any random process X, let us define the autocorrelation function Ὑ  of X as: 

  

Ὑ ‚ ɞὢὸὢὸ ‚  

 
(1) 

Reference [9] determined bounds on the variances of orbit and clock errors. However, the purpose of this work is to study the 

time correlation of the orbit and clock errors. Therefore, we are interested in the ACFs of those errors, and not just their values 

at zero. When dealing with sample autocorrelation functions, a recurrent dilemma arises between stationarity and autocorrela-

tion estimate accuracy. If  we use too little data, the autocorrelation will  most likely not be accurate due to the expectation 

operation in Equation (1), but if  we use very long sets of data, the process may not be stationary over the entire period. 

 

Let us assume that the autocorrelation function of radial-plus-clock errors is a first-order Gauss Markov Random Process 

(GMRP) with the following autocorrelation function: 

 

Ὑ ὸ „ὩȿȿȾ (2) 

where 

 †  is the time constant of the GMRP 

„  is the variance of the random process X 

 

Using this assumption, in [8] we established an upper bound on the variance of the normalized ACF estimate for a first-order 

GMRP, depending on the process time constant † and the length of data Ὕ used in the estimation of the ACF: 

 

„ „
†

Ὕ

ςὸ †

Ὕ
Ὡ Ⱦ  

 

(3) 

Figure 4 shows the upper bound on the standard deviation of the ACF estimate from Equation (3) as a function of lag time (x-

axis) for various lengths of data Ὕ (the different curves). Note that the standard deviations (y-axis) are expressed in meters 

squared because these are the units of the ACFs of the orbit and clock errors.  

 

At lag time zero, the plot shows the standard deviation of the sample variance estimate error (i.e., the different curves capture 

the uncertainty in variance estimation error as a function of the length of data used). Using 14 days of data, the standard 

deviation of the ACF estimate is close to 0.13 m2 at lag of 80 hours, whereas using 1 year of data the standard deviation of 

about 0.025 m2 at the same lag. The results in Figure 4 shows that the longer the data used to estimate the ACF, the lower the 

uncertainty. Note that in this work, we present two approaches to orbit and clock error bounding. The first one makes use of 

normalized ACF and the second one uses non-normalized ACF. Note that the conclusions obtained with Figure 4 are also valid 

if  we had studied normalized ACFs instead (see [8]). 

 



 

 

  
Figure 4: Variance of Autocorrelation Estimate for different length of data 

 

In prior work [8], we began the analysis by determining the maximum length of time over which the experimental error data 

was stationary. Starting with two weeks of data (half lunar cycles), we looked at orbit and clock ACFs over this duration and 

observed a dispersion between the various 2-weeks periods. However, this dispersion was smaller or equal to the standard 

deviations predicted in the 14 days curve mentioned above. This suggested that the data was indeed stationary over this dura-

tion. To improve the accuracy of our ACF estimates, we then tried using one month of data. The results obtained were incon-

clusive and seemed to vary from one month to the other.  

 

In this paper, we will  use a more mathematical approach to test for the stationarity of the data. A combination of the Levene 

test and the two-sample Kolmogorov-Smirnov test was used. The Levene test [20] compares the variances of two or more sets 

of data. It tests the null hypothesis according to which the variances of the populations are equal (homoscedastic). The two-

sample Kolmogorov-Smirnov test [21] determines whether two samples come from the same distribution. Both tests were 

performed with a 95% confidence level (i.e. p-value of 0.05). 

 

If  both tests come back positive (all variances are equal and all data sets come from the same distribution), the data is considered 

stationary. However, both tests assume that the samples are independent. This is not the case for the actual orbit and clock error 

data. To approximate the effective number of independent samples we use the properties of a first-order GMRP. Two samples 

of a first-order GMRP with time constant Tc can be considered independent if  they are separated by a period larger than or 

equal to 2·Tc. Therefore, to test stationarity, the data was re-sampled at regular 2·Tc intervals. 

 

 
Figure 5: Length of data selection based on stationarity 



 

 

We use the process described in Figure 5. For each PRN, the orbit and clock errors of a given satellite over 12 months of data 

are tested first for stationarity. If  the dataset is deemed non-stationary, the data is divided into stationary datasets. Once station-

arity has been asserted, the orbit and clock errors can be modeled.  

 

ORBIT  AND CLOCK  ERROR MODELING  OVER TIME  

 

In their prior work, the authors of [9] developed a bound on the variance of orbit and clock errors for GPS and Galileo, based 

on several years of data. Because the focus was on bounding the variance, and not the entire autocorrelation function, reference 

[9] does not provide any information on the time correlation of these errors. Therefore, this model was insufficient for applica-

tions including time-sequential ARAIM  or GNSS/INS integration. Here, we present two possible approaches to modeling these 

errors over time. 

 

Zero mean assumption 

 

This section demonstrates that the orbit and clock errors can be assumed zero mean. Figure 6 represents box plots of the error 

data for each of the PRN of the GPS (upper) and Galileo (lower) constellations. The x-axis represents the satelliteôs PRN 

number. The color of the plots indicates the length of data used to generate this boxplot (as determined using the stationarity 

tests). In a boxplot figure, the middle line represents the sample median and the upper and lower limits of the box represent the 

75th and 25th percentiles, respectively. The vertical lines reaching away from the boxes represent the lowest and highest data 

points, excluding the outliers, which are represented by colored dots outside of the boxes. A point is considered to be an outlier 

if  it is greater than ή ςȢχ„ ή ή  or smaller than ή ςȢχ„ ή ή , where ή and ή are the 25th and 75th percen-

tiles of the sample data. Note that ςȢχ„ corresponds to 99% of the data if  it is normally distributed. For both GPS and Galileo, 

both boxplots seem to rule in favor of a zero-mean assumption: median values of each datasets are close to zero. Note that GPS 

PRN 8 and 24 (the two Cesium satellites) have much larger standard deviations than the rest of the GPS satellites.  

 

 
Figure 6: Statistics of the 2018 GPS/GAL Orbit and Clock errors 

Given ὲ stationary data sets, let us define the following measurement equation for the estimation of the orbit and clock error 

means: 

ᾀ Ὄὼ  ’ (4) 

where:  

ᾀ  is an  ὲ-by-1 measurement vector of means of stationary data sets ὼӶ for Ὥ ρȟȣȟὲ 
H is an  ὲ-by-1 observation matrix (in our case a vector of ones) 



 

 

ὼ is the mean of orbit and clock errors (to estimate) 

’ is the measurement error covariance matrix: 

 

ὠ  

„Ӷ Ễ π

ể Ệ ể
π Ễ „Ӷ

  

 

For each stationary data set Ὥ, approximating it as a first order GMRP distribution of time constant Tc , independent samples 

can be found every 2·Tc , and the mean estimate ὼӶ for such data set is defined as: 

 

ὼӶ
ρ

ὔ
ὼȟ (5) 

where:  

ὔ  is the number of independent samples in stationary data set ὼ 

ὼȟ is the Ὧ  independent sample in stationary data set ὼ 

 

Similarly, the error on the mean estimate ὼӶ is defined as [22]:  

 

„Ӷ
„

ὔ
 (6) 

where:  

ὔ  is the number of independent samples in stationary data set ὼ 

„  is the variance of stationary data set ὼ 

 

Using a Weighted Least Squares estimator, an estimate of the orbit and clock error mean can be found with the expression: 

 

ὼ Ὄὠ Ὄ Ὄὠ ᾀ (7) 

Substituting Ὄȟὠȟ  and ᾀ into Equation (7), we obtain: 

 

ὼ
ρ

В„Ӷ

ὼӶ

„Ӷ
 (8) 

 

Using orbit and clock error data from 2018 and 2019, we obtain mean estimates of ὼ ρȢχω cm and ὼ πȢψτ cm. It is 

important to remember that the IGS reference files are provided with an accuracy of 2.5 cm. Therefore, the means obtained 

here are negligible.  

 

These results are consistent with those obtained independently in [9], which also concluded that orbit and clock error of GPS 

and Galileo were zero mean over 1-year long durations. Therefore, in the following, we will  model the orbit and clock errors 

as zero mean processes. 

 

Orbit  and clock errors autocorrelation bounding 

 

In prior work, we studied the impact of the moon and the sun on orbit and clock error time correlation. In this work, we will  

investigate the impact of satellite clock type. Figure 7 shows the normalized ACFs of GPS (left) and Galileo (right) orbit and 

clock errors for each clock type. In the left-hand-side charts of Figure 7, the differences in GPS clock errors observed in the 

time series in Figure 3 are difficult  to observe in the ACF curves. Note that GPS has only 2 Cesium clocks to work with against 

29 Rubidium clocks. Hence, it is difficult  to generalize the Cesium results based on only 2 satellite clocks. In the right hand-

side charts of Figure 7, the Galileo ACF curves show little difference between the RAFS and the PHM orbit and clock errors, 

but their time correlation decays significantly faster than for GPS clocks. 

 



 

 

  
Figure 7: Impact of satellite clocks on GPS (left) and Galileo (right) orbit and clock error ACFs 

For integrity evaluation, we could use a clock model that accounts for the worst satellite clock.  Or, if  we were able to identify 

a satelliteôs clock type at the user receiver, then we could use separate, more accurate models for each clock. However, neither 

the LNAV  nor CNAV GPS messages specify the satellite clock, which can change for a given PRN. Therefore, implementing 

separate clock-type-dependent models would require changes in the current ARAIM  Integrity Support Message (ISM) struc-

ture, or new assumptions on a receiverôs access to Notice Advisory to Navstar Users (NANUs). For simplicityôs sake, we will  

bound all satellites together instead of differentiating by clocks (or even blocks).  

 

 
Figure 8: ACF bounding for GPS (left) and Galileo (right) satellites 

Figure 8 shows ACFs of the radial-plus-clock error of each GPS (left) and Galileo (right) satellites, with data taken over sta-

tionary periods of 2018. GPS satellites are lower-bounded and upper-bounded using GMRPs with time constants of 3 hours 

and 42 hours, respectively. Galileo satellites are bounded with GMRPs with time constants of 2 hours and 13 hours. 

 

This approach to bound the orbit and clock errors over time has the advantage of being easy to visualize and to understand. 

However, the bounds obtained here are quite loose and will  ultimately lead to very conservative results. Moreover, note that 

we have here limited the lag times to 2 hours. If  we want to extend the bounding process to larger durations (e.g. to the longest 

flight duration is about 18 hours), the ACF curves start to oscillate and even reach negative values that cannot be lower-bounded 

using first order GMRPs (as observed and tackled in [23]). The following section approaches modeling by bounding the PSD, 

which presents the advantage of being less restrictive, and more intuitive than autocorrelation bounding. 

 

 

 

 



 

 

Orbit  and clock errors Power Spectral Density bounding 

 

When it comes to estimating power spectral densities of stationary data, several methods exist [22], the most straightforward 

being the Discrete Fourier Transform (DFT) of the ACF. Reference [13] conjectures that error ACF values at time lags exceed-

ing the duration of the Kalman filterôs operation are not relevant and can, therefore, be set to any value (zero, for example). 

This conjecture is strictly true only for zero mean processes, but as we showed earlier a zero-mean assertion is justified in this 

application. To estimate the orbit and clock error PSDs, we used data collected over the entire year of 2018, and broken up into 

stationary segments. We then applied the PSD estimation algorithm used in [13] and summarized in Figure 9.  

 

Figure 9: PSD estimation algorithm [13]  

This algorithm uses a tapering window (see Figure 10) applied to the orbit and clock errors ACFs prior to the DFT to control 

spectral leakage. The figure on the left represents the window itself with respect to lag number. The figure on the right represents 

an example ACF with (black) and without (grey) tapering by the window. The sharp changes involved in simpler rectangular 

windows generate spectral leakage that diminishes the quality of the estimated PSD. The tapering window ‰ function defined 

in [13] and used in this work smooths out the edges of the original rectangular window to reduce spectral leakage. This tapering 

window depends on two limit  lag-time parameters: ὲ and ὲ. ὲ is the maximum lag-time for which ACF values remain un-

changed. ACF values associated to lags larger than ὲ are set to zero. The farther apart ὲ and ὲ are from each other, the less 

spectral leakage is observed in the estimated PSD. In our case, because the longest satellite pass lasts 7 h, we choose 7 and 14 

hours for ὲ and ὲ, respectively. 

 
Figure 10: Tapering Window and its impact on an ACF [13]  

The left plot in Figure 11 shows the estimated PSD curves for the GPS satellites. The blue curves represent the Cs satellitesô 

orbit and clock errors and the green curves represent the Rb ones. The two types of clocks can again be differentiated, with the 

Cs curves mostly above the Rb ones. The Rb clock curves are lower, which means that the standard deviation of the errors is 

also lower, which matches previous observations.  

 

Similarly, the right-hand-side plot in Figure 11 represents the Galileo orbit and clock error PSDs color-coded by clock type. 

Consistent with the time series and ACF observations, Galileo's orbit and clock errors from RAFS and PHM perform very 

-------------------------------------------------- Step 1: Remove the mean --------------------------------------------------- 

ὝǪ  ὝǪ   ὝǪ  

--------------------------------------- Step 2: Compute the autocorrelation function -------------------------------------- 

ὶȟ ὰ ὼὧέὶὶὝǪ  

----------------------------- Step 3: Taper the autocorrelation function with a window ‰  ----------------------------- 

ὶǿ ὶȢ‰ὰȟὲȟὲ 

-------------------------------------------- Step 4: Compute the modified PSDs -------------------------------------------- 

Ὓ ὶǿὩ  



 

 

similarly based on the limited number of clock samples available. In both cases, bounding the two clock types separately would 

hardly improve the quality of the bound.  

 

 
Figure 11: Impact of satellite clocks on GPS (left) and Galileo (right) orbit and clock error PSDs 

Additionnally, we note that  resonant peaks can be observed in the PSDs of both constellations. The first GPS peak is located 

at a frequency of  ςȢωςρπ Hz, which corresponds to a period of approximately 9.5 hours. The Galileo peak is located at 

approximately ςȢρυρπ Hz corresponding to 12.9 hours. GPS satellites have an orbit period of one half a sidereal day (23h 

56m 4s) and will  therefore take about 11.9 hours to orbit the earth. Galileo satellites on the other hand, will  take about 14 hours 

to orbit the Earth. These values are close to the first peaks observed on the orbit and clock errorôs PSDs. It is interesting to note 

that if  we take larger values for ὲ, the ACFs at lags near the orbit period will  be less attenuated, and therefore, the peaks 

observed on the PSDs tend to move closer to the orbit period. 

 

 
Figure 12: PSD bounding for GPS (left) and Galileo (right) satellites 

To model the dynamics of orbit and clock errors over time, we gathered the orbit and clock errors of each satellite for each 

stationary dataset of 2018 and separated them by constellation. For each constellation, PSDs were upper-bounded by a first-

order GMRP curve of time constant † and standard deviation „ , using the expression [24]: 

 

ὛὪ ς„ †ϳ ȾρȾ† τ“Ὢ  (10) 

 

Figure 12 shows the result. For the GPS constellation, the PSDs of orbit and clock errors were bounded using time constant 

† υ hours and „ ρȢψ meters. Similarly, the Galileo errors were bounded with † ς hours and „ πȢυυ meters.  

 


